Interpolation & Polynomial Approximation Divided Differences

Dr. Feras Fraige

		First divided differences	Second divided differences	Third divided differences	Fourth divided differences
1.0	0.7651977				
1.3	0.6200860	-0.4837057	-0.1087339		
	0.4554000	-0.5489460		0.0658784	0.0040254
1.6	0.4554022	-0.5786120	-0.0494433	0.0680685	0.0018251
1.9	0.2818186	-0.5715210	0.0118183	0.0080085	
2.2	0.1103623	-0.3713210			

$$h = x_1 - x_0 = 1.3 - 1 = 0.3$$

$$S = (x - x_0)/h = (1.1 - 1)/0.3$$

$$S = 1/3$$

• If an approximation to f (1.1) is required, the reasonable choice for the nodes would be x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2 since this choice makes the earliest possible use of the data points closest to x = 1.1, and also makes use of the fourth divided difference. This implies that h = 0.3 and s = 1/3, so the Newton forward divided difference formula is used with the divided differences that have a solid underline () in Table

		First divided differences	Second divided differences	Third divided differences	Fourth divided differences
1.0	0.7651977				
		-0.4837057			
1.3	0.6200860		-0.1087339		
		-0.5489460		0.0658784	
1.6	0.4554022		-0.0494433		0.0018251
		-0.5786120		0.0680685	
1.9	0.2818186		0.0118183		
		-0.5715210			
2.2	0.1103623				

 $+\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)(0.3)^{3}(0.0658784)$ $+\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(-\frac{8}{3}\right)(0.3)^{4}(0.0018251)$ = 0.7196460.

Predict the value of f(2) using Newton backward divided difference based on data points given.

• To approximate a value when x is close to the end of the tabulated values, say, x = 2.0, we would again like to make the earliest use of the data points closest to x. This requires using the Newton backward divided-difference formula with s = -2/3 and the divided differences in Table that have a *wavy* underline (-----). Notice that the fourth divided *difference* is used in both formulas.

$$h = x_1 - x_0 = 1.3 - 1 = 0.3$$

$$S = (x - x_n)/h = (2 - 2.2)/0.3$$

$$S = -2/3$$

$$P_{4}(2.0) = P_{4}\left(2.2 - \frac{2}{3}(0.3)\right)$$

= 0.1103623 - $\frac{2}{3}(0.3)(-0.5715210) - \frac{2}{3}\left(\frac{1}{3}\right)(0.3)^{2}(0.0118183)$
- $\frac{2}{3}\left(\frac{1}{3}\right)\left(\frac{4}{3}\right)(0.3)^{3}(0.0680685) - \frac{2}{3}\left(\frac{1}{3}\right)\left(\frac{4}{3}\right)\left(\frac{7}{3}\right)(0.3)^{4}(0.0018251)$
= 0.2238754.