Interpolation \& Polynomial Approximation Divided Differences

Dr. Feras Fraige

Predict the value of $f(1.1)$ using Newton forward divided difference based on data points given.

		First divided differences	Second divided differences	Third divided differences	Fourth divided differences
1.0	$\underline{0.7651977}$				
1.3	0.6200860	$\underline{-0.4837057}$			
1.6	0.4554022	-0.5489460	$\underline{-0.1087339}$	$\underline{0.0658784}$	0.0018251
1.9	0.2818186	-0.5786120	-0.0494433	0.0680685	
2.2	$\underline{0.1103623}$	-0.5715210			

$$
\begin{aligned}
& h=x_{1}-x_{0}=1.3-1=0.3 \\
& S=\left(x-x_{0}\right) / h=(1.1-1) / 0.3 \\
& S=1 / 3
\end{aligned}
$$

- If an approximation to $f(1.1)$ is required, the reasonable choice for the nodes would be $x 0=$ $1.0, x 1=1.3, x 2=1.6, x 3=1.9$, and $x 4=2.2$ since this choice makes the earliest possible use of the data points closest to $x=1.1$, and also makes use of the fourth divided difference. This implies that $h=0.3$ and $s=1 / 3$, so the Newton forward divided difference formula is used with the divided differences that have a solid underline (___) in Table

1.0	$\underline{0.7651977}$				
1.3	0.6200860	$\underline{-0.4837057}$			
1.6	0.4554022	-0.5489460	$\underline{-0.1087339}$	$\underline{0.0658784}$	
1.9	0.2818186	-0.5786120	-0494433	0.00680685	$\underline{0.0018251}$
2.2	$\underline{0.1103623}$	-0.5715210			

$$
\begin{aligned}
P_{n}(x)= & P_{n}\left(x_{0}+s h\right)=f\left[x_{0}\right]+\operatorname{sh} f\left[x_{0}, x_{1}\right]+s(s-1) h^{2} f\left[x_{0}, x_{1}, x_{2}\right] \\
& +\cdots+s(s-1) \cdots(s-n+1) h^{n} f\left[x_{0}, x_{1}, \ldots, x_{n}\right] \\
= & f\left[x_{0}\right]+\sum_{k=1}^{n} s(s-1) \cdots(s-k+1) h^{k} f\left[x_{0}, x_{1}, \ldots, x_{k}\right] . \\
P_{4}(1.1)= & P_{4}\left(1.0+\frac{1}{3}(0.3)\right) \\
= & 0.7651977+\frac{1}{3}(0.3)(-0.4837057)+\frac{1}{3}\left(-\frac{2}{3}\right)(0.3)^{2}(-0.1087339) \\
& +\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)(0.3)^{3}(0.0658784) \\
& +\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(-\frac{8}{3}\right)(0.3)^{4}(0.0018251) \\
= & 0.7196460 .
\end{aligned}
$$

Predict the value of $f(2)$ using Newton backward divided difference based on data points given.

- To approximate a value when x is close to the end of the tabulated values, say, $x=2.0$, we would again like to make the earliest use of the data points closest to x. This requires using the Newton backward divided-difference formula with $s=-2 / 3$ and the divided differences in Table that have a wavy underline (~~). Notice that the fourth divided difference is used in both formulas.

$$
\begin{aligned}
& h=x_{1}-x_{0}=1.3-1=0.3 \\
& S=\left(x-x_{n}\right) / h=(2-2.2) / 0.3 \\
& S=-2 / 3
\end{aligned}
$$

$$
\begin{aligned}
P_{4}(2.0)= & P_{4}\left(2.2-\frac{2}{3}(0.3)\right) \\
= & 0.1103623-\frac{2}{3}(0.3)(-0.5715210)-\frac{2}{3}\left(\frac{1}{3}\right)(0.3)^{2}(0.0118183) \\
& -\frac{2}{3}\left(\frac{1}{3}\right)\left(\frac{4}{3}\right)(0.3)^{3}(0.0680685)-\frac{2}{3}\left(\frac{1}{3}\right)\left(\frac{4}{3}\right)\left(\frac{7}{3}\right)(0.3)^{4}(0.0018251) \\
= & 0.2238754
\end{aligned}
$$

