Ch 04-1 Numerical Differentiation I

Dr. Feras Fraige

Outline

- 1. Introduction to Numerical Differentiation
- 2. General Derivative Approximation Formulas
- 3. Some useful three-point formulas

Introduction to Numerical Differentiation

Approximating a Derivative

• The derivative of the function f at x_0 is

$$f'(x_0) = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}.$$

 This formula gives an obvious way to generate an approximation to f'(x₀); simply compute

$$\frac{f(x_0+h)-f(x_0)}{h}$$

for small values of *h*. Although this may be obvious, it is not very successful, due to our old nemesis round-off error.

But it is certainly a place to start.

Introduction to Numerical Differentiation

Approximating a Derivative (Cont'd)

- To approximate $f'(x_0)$, suppose first that $x_0 \in (a, b)$, where $f \in C^2[a, b]$, and that $x_1 = x_0 + h$ for some $h \neq 0$ that is sufficiently small to ensure that $x_1 \in [a, b]$.
- We construct the first Lagrange polynomial P_{0,1}(x) for f determined by x₀ and x₁, with its error term:

$$f(x) = P_{0,1}(x) + \frac{(x-x_0)(x-x_1)}{2!}f''(\xi(x))$$

$$=\frac{f(x_0)(x-x_0-h)}{-h}+\frac{f(x_0+h)(x-x_0)}{h}+\frac{(x-x_0)(x-x_0-h)}{2}f''(\xi(x))$$

for some $\xi(x)$ between x_0 and x_1 .

$$f(x) = \frac{f(x_0)(x - x_0 - h)}{-h} + \frac{f(x_0 + h)(x - x_0)}{h} + \frac{(x - x_0)(x - x_0 - h)}{2}f''(\xi(x))$$

Differentiating gives

$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + D_x \left[\frac{(x - x_0)(x - x_0 - h)}{2} f''(\xi(x)) \right]$$

$$= \frac{f(x_0 + h) - f(x_0)}{h} + \frac{2(x - x_0) - h}{2} f''(\xi(x))$$

$$+ \frac{(x - x_0)(x - x_0 - h)}{2} D_x (f''(\xi(x)))$$

Deleting the terms involving $\xi(x)$ gives

$$f'(x) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f'(x) \approx \frac{f(x_0+h)-f(x_0)}{h}$$

Approximating a Derivative (Cont'd)

- One difficulty with this formula is that we have no information about $D_x f''(\xi(x))$, so the truncation error cannot be estimated.
- When x is x_0 , however, the coefficient of $D_x f''(\xi(x))$ is 0, and the formula simplifies to

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi)$$

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi)$$

Forward-Difference and Backward-Difference Formulae

For small values of h, the difference quotient

$$\frac{f(x_0+h)-f(x_0)}{h}$$

can be used to approximate $f'(x_0)$ with an error bounded by M|h|/2, where M is a bound on |f''(x)| for x between x_0 and $x_0 + h$.

This formula is known as the forward-difference formula if h > 0
 and the backward-difference formula if h < 0.</p>

Forward-Difference Formula to Approximate $f'(x_0)$

Example 1: $f(x) = \ln x$

Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using h = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.

Solution (1/3)

The forward-difference formula

$$\frac{f(1.8+h)-f(1.8)}{h}$$

with h = 0.1 gives

$$\frac{\ln 1.9 - \ln 1.8}{0.1} = \frac{0.64185389 - 0.58778667}{0.1} = 0.5406722$$

Numerical Differentiation: Example 1

Solution (2/3)

Because $f''(x) = -1/x^2$ and 1.8 $< \xi <$ 1.9, a bound for this approximation error is

$$\frac{|hf''(\xi)|}{2} = \frac{|h|}{2\xi^2} < \frac{0.1}{2(1.8)^2} = 0.0154321$$

The approximation and error bounds when h = 0.05 and h = 0.01 are found in a similar manner and the results are shown in the following table.

Numerical Differentiation: Example 1

Solution (3/3): Tabulated Results

h	f(1.8 + h)	$\frac{f(1.8+h)-f(1.8)}{h}$	$\frac{ h }{2(1.8)^2}$
0.1	0.64185389	0.5406722	0.0154321
0.05	0.61518564	0.5479795	0.0077160
0.01	0.59332685	0.5540180	0.0015432

Since f'(x) = 1/x The exact value of f'(1.8) is $0.55\overline{5}$, and in this case the error bounds are quite close to the true approximation error.

Method of Construction

- To obtain general derivative approximation formulas, suppose that $\{x_0, x_1, \ldots, x_n\}$ are (n + 1) distinct numbers in some interval I and that $f \in C^{n+1}(I)$.
- From the interpolation error theorem we have

$$f(x) = \sum_{k=0}^{n} f(x_k) L_k(x) + \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi(x))$$

for some $\xi(x)$ in I, where $L_k(x)$ denotes the kth Lagrange coefficient polynomial for f at x_0, x_1, \ldots, x_n .

The Lagrange Polynomial: Theoretical Error Bound

Suppose $x_0, x_1, ..., x_n$ are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then, for each x in [a, b], a number $\xi(x)$ (generally unknown) between $x_0, x_1, ..., x_n$, and hence in (a, b), exists with

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

where P(x) is the interpolating polynomial given by

$$P(x) = f(x_0)L_{n,0}(x) + \cdots + f(x_n)L_{n,n}(x) = \sum_{k=0}^{n} f(x_k)L_{n,k}(x)$$

$$f(x) = \sum_{k=0}^{n} f(x_k) L_k(x) + \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi(x))$$

Method of Construction (Cont'd)

Differentiating this expression gives

$$f'(x) = \sum_{k=0}^{n} f(x_k) L'_k(x) + D_x \left[\frac{(x - x_0) \cdots (x - x_n)}{(n+1!)} \right] f^{(n+1)}(\xi(x))$$

$$+ \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} D_x [f^{(n+1)}(\xi(x))]$$

$$f'(x) = \sum_{k=0}^{n} f(x_k) L'_k(x) + D_x \left[\frac{(x - x_0) \cdots (x - x_n)}{(n+1!)} \right] f^{(n+1)}(\xi(x))$$

$$+ \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} D_x [f^{(n+1)}(\xi(x))]$$

Method of Construction (Cont'd)

We again have a problem estimating the truncation error unless x is one of the numbers x_j . In this case, the term multiplying $D_x[f^{(n+1)}(\xi(x))]$ is 0, and the formula becomes

$$f'(x_j) = \sum_{k=0}^n f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} \prod_{\substack{k=0\\k\neq j}}^n (x_j - x_k)$$

which is called an (n + 1)-point formula to approximate $f'(x_i)$.

$$f'(x_j) = \sum_{k=0}^n f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} \prod_{\substack{k=0\\k\neq j}}^n (x_j - x_k)$$

Comment on the (n + 1)-point formula

- In general, using more evaluation points produces greater accuracy, although the number of functional evaluations and growth of round-off error discourages this somewhat.
- The most common formulas are those involving three and five evaluation points.

We first derive some useful three-point formulas and consider aspects of their errors.

Important Building Blocks

Since

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

we obtain

$$L_0'(x) = \frac{2x - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)}$$

In a similar way, we find that

$$L'_1(x) = \frac{2x - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)}$$

$$L'_2(x) = \frac{2x - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)}$$

Important Building Blocks (Cont'd)

Using these expressions for $L'_{j}(x)$, $1 \le j \le 2$, the n+1-point formula

$$f'(x_j) = \sum_{k=0}^n f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} \prod_{\substack{k=0\\k\neq j}}^n (x_j - x_k)$$

becomes for n = 2:

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{\substack{k=0 \ k \neq j}}^{2} (x_j - x_k)$$

for each j = 0, 1, 2, where $\xi_i = \xi_i(x)$.

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{\substack{k=0 \ k \neq j}}^2 (x_j - x_k)$$

Assumption

The 3-point formulas become especially useful if the nodes are equally spaced, that is, when

$$x_1 = x_0 + h$$
 and $x_2 = x_0 + 2h$, for some $h \neq 0$

We will assume equally-spaced nodes throughout the remainder of this section.

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{\substack{k=0 \ k \neq j}}^{2} (x_j - x_k)$$

Three-Point Formulas (1/3)

With $x_j = x_0, x_1 = x_0 + h$, and $x_2 = x_0 + 2h$, the general 3-point formula becomes

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_1) - \frac{1}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{\substack{k=0 \ k \neq j}}^{2} (x_j - x_k)$$

Three-Point Formulas (2/3)

Doing the same for $x_j = x_1$ gives

$$f'(x_1) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_2) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{\substack{k=0 \ k \neq j}}^{2} (x_j - x_k)$$

Three-Point Formulas (3/3)

... and for $x_j = x_2$, we obtain

$$f'(x_2) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_1) + \frac{3}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$$

Three-Point Formulas: Further Simplification

Since $x_1 = x_0 + h$ and $x_2 = x_0 + 2h$, these formulas can also be expressed as

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_0 + h) - \frac{1}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$f'(x_0 + h) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_0 + 2h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

$$f'(x_0 + 2h) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_0 + h) + \frac{3}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$$

As a matter of convenience, the variable substitution x_0 for $x_0 + h$ is used in the middle equation to change this formula to an approximation for $f'(x_0)$. A similar change, x_0 for $x_0 + 2h$, is used in the last equation.

Three-Point Formulas: Further Simplification (Cont'd)

This gives three formulas for approximating $f'(x_0)$:

$$f'(x_0) = \frac{1}{2h}[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3}f^{(3)}(\xi_0)$$

$$f'(x_0) = \frac{1}{2h}[-f(x_0 - h) + f(x_0 + h)] - \frac{h^2}{6}f^{(3)}(\xi_1), \text{ and}$$

$$f'(x_0) = \frac{1}{2h}[f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0)] + \frac{h^2}{3}f^{(3)}(\xi_2)$$

Finally, note that the last of these equations can be obtained from the first by simply replacing h with -h, so there are actually only two formulas.

Three-Point Endpoint Formula

$$f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

where ξ_0 lies between x_0 and $x_0 + 2h$.

Three-Point Midpoint Formula

$$f'(x_0) = \frac{1}{2h}[f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6}f^{(3)}(\xi_1)$$

where ξ_1 lies between $x_0 - h$ and $x_0 + h$.

(1)
$$f'(x_0) = \frac{1}{2h}[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3}f^{(3)}(\xi_0)$$

(2)
$$f'(x_0) = \frac{1}{2h}[f(x_0+h)-f(x_0-h)]-\frac{h^2}{6}f^{(3)}(\xi_1)$$

Comments

- Although the errors in both Eq. (1) and Eq. (2) are O(h²), the error in Eq. (2) is approximately half the error in Eq. (1).
- This is because Eq. (2) uses data on both sides of x₀ and Eq. (1) uses data on only one side.
- Note also that f needs to be evaluated at only two points in Eq. (2), whereas in Eq. (1) three evaluations are needed.

Three-Point Midpoint Formula

$$f'(x_0) = \frac{1}{2h}[f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6}f^{(3)}(\xi_1)$$

where ξ_1 lies between $x_0 - h$ and $x_0 + h$.

Examples of five-point formulas

Five-Point Midpoint Formula

$$f'(x_0) = \frac{1}{12h}[f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30}f^{(5)}(\xi)$$

where ξ lies between $x_0 - 2h$ and $x_0 + 2h$.

Five-Point Endpoint Formula

$$f'(x_0) = \frac{1}{12h} [-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h)] + \frac{h^4}{5} f^{(5)}(\xi)$$

where ξ lies between x_0 and $x_0 + 4h$.