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Matrix Factorization

Background

@ Gaussian elimination is the principal tool in the direct solution of
linear systems of equations.

@ We will now see that the steps used to solve a system of the form
Ax = b can be used to factor a matrix.

@ The factorization is particularly useful when it has the form
A = LU, where L is lower triangular and U is upper triangular.

@ Although not all matrices have this type of representation, many
do that occur frequently in the application of numerical techniques.

o




Matrix Factorization

Computational Cost Considerations

@ Gaussian elimination applied to an arbitrary linear system Ax =b
requires O(n°/3) arithmetic operations to determine x.

@ However, to solve a linear system that involves an upper-triangular
system requires only backward substitution, which takes O(nz}
operations.

@ The number of operations required to solve a lower-triangular
systems is similar.




Matrix Factorization

Solution Strategy

Suppose that A has been factored into the triangular form A = LU,
where L is lower triangular and U is upper triangular. Then we can
solve for x more easily by using a two-step process:

@ First we let y = Ux and solve the lower triangular system Ly = b
fory. Since L is triangular, determining y from this equation
requires only O(nz} operations.

@ Once y is known, the upper triangular system Ux = y requires
only an additional O(n?) operations to determine the solution x.

Solving a linear system Ax = b in factored form means that the
number of operations needed to solve the system Ax = b is reduced
from O(n*/3) to O(2n?).




Constructing L & U

@ First, suppose that Gaussian elimination can be performed on the
system Ax = b without row interchanges.

@ With the notation used earlier, this is equivalent to having nonzero
()

Matrix Factorization
Constructng L& U ]

pivot elements a;;*, foreach/ =1,2,...,n.
@ The first step in the Gaussian elimination process consists of
performing, for eachj = 2, 3.....n, the operations

(1)

a;,
(Ej —mj1E1) — (E;), where m; = %
2

@ These operations transform the system into one in which all the
entries in the first column below the diagonal are zero.




Matrix Factorization: Constructing L & U (Cont'd)

The system of operations in

(Ej —mj1E1) — (Ej), where mjq = —=
B

can be viewed in another way. It is simultaneously accomplished by
multiplying the original matrix A on the left by the matrix

1 0O ... ... 0
—Moq 1
MO =1
; . .. 0
| —mp 0 - 01

This is called the first Gaussian transformation matrix.




Matrix Factorization

Constructing L & U (Cont'd)

@ We denote the product of this matrix with A(Y) = A by A(?) and
with b by b(?), so

APR)x = MDAx = MDp = b2

@ In a similar manner we construct M(?), the identity matrix with the
entries below the diagonal in the second column replaced by the
negatives of the multipliers




Matrix Factorization

Constructing L & U (Contd)

@ The product of M(?) with A(®) has zeros below the diagonal in the
first two columns, and we let

AR x — @) AR x — @M D Ax = PN = p3)



Matrix Factorization
Constructing L& U (Contd) |

Constructing L & U (Contd)

In general, with A¥)x = b¥) already formed, multiply by the kth
Gaussian transformation matrix

-1 0 ... e e 0T

0 1
M) = 0
—Mk1k
; 0
L 0 —Mn k 0 0 1.




Matrix Factorization

Constructing L & U (Cont'd)

to obtain

Alk+T)y g0 oK)y

— . yp



Matrix Factorization
Constructing L & U (Cont'd)

The process ends with the formation of A"x = b(") where A" s the
upper triangular matrix

- () (1) (1) ]
411 Q2 - 0 Ay
0 a '
Al — :
(n—1)
an—1,n
0 0 ays |

given by




Matrix Factorization

Constructing L & U (Cont'd)

@ This process forms the U = A portion of the matrix factorization
A=LU.

@ To determine the complementary lower triangular matrix L, first
recall the multiplication of A(¥)x = b¥) by the Gaussian
transformation of M%) used to obtain:

Ak+Dy — pK) Ay — pOpK) — pk+1)

where M%) generates the row operations

{EJ,-—mJ,-?;{EH)—}(Ej): fori=k+1,....n.




Matrix Factorization
Constructing L & U (Contd)

To reverse the effects of this transformation and return to A%) requires
that the operations (E; + m; xkEx) — (E;) be performed for each

j =k +1,....n. This is equivalent to multiplying by [M(""}]_1:

S R o T
0 1
;) _ [M{m]‘1 0
Mk 11 k
: 0
] 0 mpx O 0 1.




Matrix Factorization
Constructing L & U (Contd)

The lower-triangular matrix L in the factorization of A, then, is the
product of the matrices L():

10 0
meq 1
L =LMW@) ..  =1) .
_mn1 mn,n—1 .1-

since the product of L with the upper-triangular matrix
U=mMn=1...MCMDA gives




Matrix Factorization

Constructing L & U (Cont'd)

(U = [((MWp@) .. p(n=3))(n=2))(n-1)
) M(ﬂ—ﬂM{n—z]M{n—S} o M(Z]M“} A

_ [M(1)]—1[M(2)]—1 o [M{H—E}]—'l [M[n—ﬂ]—'l
=D (-2 @) A

= A

We now state a theorem which follows from these observations. )



Matrix Factorization

Theorem

If Gaussian elimination can be performed on the linear system AXx =b
without row interchanges, then the matrix A can be factored into the
product of a lower-triangular matrix L and an upper-triangular matrix U,

thatis, A= LU, where mj; = a}f}/a;{;},

2 - :
0 agz] . : my, 1
U — L —
= n_'] - . - -
- ﬂf?_q_‘,?, : ; I c 0
i 0 0 EEJHE] | My - mn,n—'l 1 i




Matrix Factorization

(a) Determine the LU factorization for matrix A in the linear system
AX = b, where

1 1 0 3 1
2 1 -1 1 1

A=) 3 -1 -1 2| @ bP=1 5
-1 2 3 -1 | 4

(b) Then use the factorization to solve the system

X1+ X +3x4 = 8
2X1+ Xo— X3+ Xa= [
3X1 — Xo— X3+ 2X4 = 14
—X1+2X2 +3X3 — Xq4 = —7




Matrix Factorization: 4 x 4 Example

Part (a) Solution (1/2)

The original system was considered under Gaussian Elimination
where we saw that the sequence of operations

(E2 — 2E1) — (E2) (Ez — 3E1) — (E3)
(Eq — (=1)E1) — (E4) (Es —4E>) — (E3)
(Eq4 — (—3)E2) — (E4)

converts the system to the triangular system

X1+ X2 + 3x4= 4
— X9 — X3 — DXq4= —7
3x3+13x4 = 13
—13x4 = —13




Matrix Factorization: 4 x 4 Example

Part (a) Solution (2/2)

The multipliers m; and the upper triangular matrix produce the
factorization

1 1 0 3
2 1 -1 1
A= 3 -1 -1 2
-1 2 3 —1|
1 00071 1 0 3]
B 2 1.0 0 0 -1 -1 -5
- 3 4 10 0 0 3 13
1 -3 01][0 0 0 —-13_




Matrix Factorization: 4 x 4 Example

Part (b) Solution (1/3)

To solve

" 1 00071 1 0 37Tx
B B 2 10010 =1 =1 =5 | x
sLi= sl = 3 410|]l0 0 3 13/ xs
1 -3 01][0 0 0 —-13] | x4

. -

B 7

= | 14

__?_

we first introduce the substitution y = Ux. Then b = L(UX) = Ly.




Matrix Factorization: 4 x 4 Example

Part (b) Solution (2/3)
First, solve Ly = b (where y = UX:

1 00 077y 8
| 2 100]||yw]| | 7
Y=1 3 4 10||y|"| 14
1 30 1|yl |-7

This system is solved for y by a simple forward-substitution process:

y1=28
2y1+Yy2=7 = Ya=17-2y1=-9
3y1+4y2+ys=14 = y3=14—-3y1 —4y> =26
Y1 =32tYa=—T = Ya=—T+y1+32=-26




Matrix Factorization: 4 x 4 Example

Part (b) Solution (3/3)

We then solve Ux =y for X, the solution of the original system; that is,

1 0 3
— 1 = ==

0O 0 -13

[ 1

0

0O 0 3 13
| 0

Using backward substitution we obtain x4 =2, x3 =0, xo = -1, x4 = 3.

8
—2
26

— _26 -




Discuss algorithm



Matrix Factorization

Using the LU Factorization to solve Ax =Db

Once the matrix factorization is complete, the solution to a linear
system of the form

AXx=LUx=Db
is found by first letting
y = Ux
and solving
Ly =D

fory.



Matrix Factorization

Using the LU Factorization (Cont'd)

b
@ Since L is lower triangular, we have y1 = —1 and, for each

, l11
i=2.3,....n

¥

.1
= o= Xy

@ Aftery is found by this forward-substitution process, the
upper-triangular system Ux =y is solved for x by backward
substitution using the equations

Yn 1

Xp =22 and Xx;= — Z UjX;
Unn Ui =it




Matrix Factorization: Permutation Matrices

Limitations of the LU Factorization Algorithm

@ We assumed that Ax = b can be solved using Gaussian
elimination without row interchanges.

@ From a practical standpoint, this factorization is useful only when
row interchanges are not required to control round-off error.

@ We will now consider the modifications that must be made when
row interchanges are required.




Matrix Factorization: Permutation Matrices

We begin with the introduction of a class of matrices that are used to
rearrange, or permute, rows of a given matrix. J

Permutation Matrix

An n x n permutation matrix P = [p;] is a matrix obtained by
rearranging the rows of /,, the identity matrix. This gives a matrix with

precisely one nonzero entry in each row and in each column, and each
nonzero entry is a 1.




Matrix Factorization: Permutation Matrices

The matrix

1 0 0
P=|(0 0 1
0 1 0

s a 3 x 3 permutation matrix. For any 3 x 3 matrix A, multiplying on the
left by P has the effect of interchanging the second and third rows of A:

1T 00 ayy a2 a3 ay1 ap as
FA=|0 0 1 81 @xp a3 | = | az1 asx ass
0 1 0| | a3y azp asz | | dpq Az a3 |

Similarly, multiplying A on the right by P interchanges the second and
third columns of A.




Matrix Factorization: Permutation Matrices

Two useful properties of permutation matrices (1/2)

Suppose K. ..., Ky is a permutation of the integers 1.....n and the
permutation matrix P = (pj) is defined by

1, =k
P = 0, otherwise




Matrix Factorization: Permutation Matrices

Two useful properties of permutation matrices (2/2)
Then

@ FA permutes the rows of A; that is,

Ay, 1 Qg2

dg,1  y,2
2 2
PA = _ _

 8k,1 dk,2

@ P lexistsand P~1 = P!,

aﬁf 1N
akgn

ak.n |




Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination

@ Earlier, we saw that for any nonsingular matrix A, the linear
system Ax = b can be solved by Gaussian elimination, with the
possibility of row interchanges.

@ If we knew the row interchanges that were required to solve the
system by Gaussian elimination, we could arrange the original
equations in an order that would ensure that no row interchanges
are needed.

@ Hence there is a rearrangement of the equations in the system
that permits Gaussian elimination to proceed without row
interchanges.




Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination (Cont'd)

@ This implies that for any nonsingular matrix A, a permutation
matrix P exists for which the system

PAX = Pb

can be solved without row interchanges. As a consequence, this
matrix PA can be factored into PA = LU, where L is lower
triangular and U is upper triangular.

@ Because P~' = P!, this produces the factorization
A=P LU = (P'L)U.

@ The matrix U is still upper triangular, but P!L is not lower triangular
unless P = I.

o




Matrix Factorization: Permutation Matrices

Determine a factorization in the form A = (P!L)U for the matrix

"0 0 -1 1
1 1 -1 2
A=l 1 1 20
1 2 0 2|

The matrix A cannot have an LU factorization because a1 = 0. |




Matrix Factorization: Permutation Matrices

Solution (1/4)

However, using the row interchange (E4) — (E>), followed by
(Es + E4) — (E3) and (E4 — E4) — (E4), produces

11 -1 2
00 —1 1
00 12
‘01 10

Then, the row interchange (E,) «— (Ey), followed by (E4 + E3) — (E4),
gives the matrix

W N O M

1 —1
1 1
0 1
0 O

O oo —




Matrix Factorization: Permutation Matrices

Solution (2/4)

The permutation matrix associated with the row interchanges
(E1) = (E2) and (Ez) < (E4) Is

(o I e B e R
o = 0O O
O 0O -0

and

1
2
PA = 1
0

= O NN




Matrix Factorization: Permutation Matrices

Solution (3/4)

@ Gaussian elimination is performed on FA using the same
operations as on A, except without the row interchanges.

@ Thatis, (E2 — Eq) — (Ez), (E3 + E4) — (E3), followed by
(Ea+ E3) — (Ea).
@ The nonzero multipliers for FA are consequently,

mzr =1, m31=-—1, and mys = —1,

and the LU factorization of PA is

" 10 00711 1 -1 2
11 00 01 10
PA=1 _10 1 0 00 1 2|=LtV
00 -11][00 0 3]




Matrix Factorization: Permutation Matrices

Solution (4/4)

Multiplying by P—1 = P! produces the factorization

A=pP Y (LU)=P{LU) = (P'L)U

00 -1 1711 -1 2
B 10 00|01 10
~|-10 10|00 12
11 0o0]|l0O0 0 3.
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