Chapter 1 Random Variables and Probability Distributions

1.1 Concept of a Random Variable:

• In a statistical experiment, it is often very important to allocate numerical values to the outcomes.

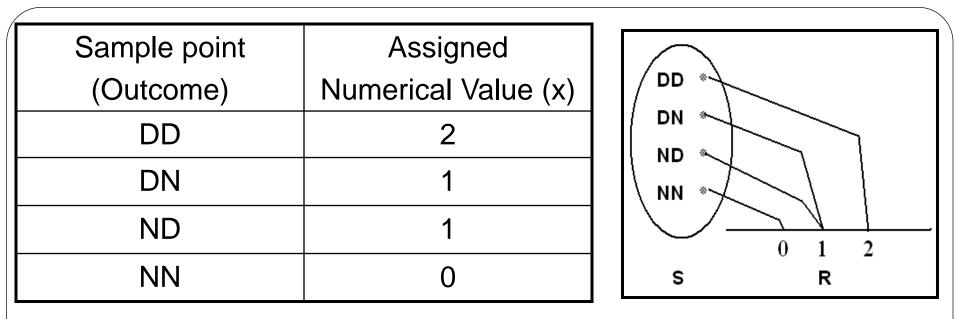
Example 1:

Experiment: testing two components. (D=defective, N=non-defective)

Sample space: S={DD,DN,ND,NN}

- Let X = number of defective components when two components are tested.

Assigned numerical values to the outcomes are:



 \Box Notice that, the set of all possible values of the random variable X is {0, 1, 2}.

Definition 1:

A random variable X is a function that associates each element in the sample space with a real number (i.e., $X : S \rightarrow R$.)

Notation:

" X " denotes the random variable .

" x " denotes a value of the random variable X.

Types of Random Variables:

• A random variable X is called a **discrete** random variable if its set of possible values is countable, i.e.,

 $.x \, \in \, \{x_1^{}, \, x_2^{}, \, \ldots, \, x_n^{}\} \text{ or } x \, \in \, \{x_1^{}, \, x_2^{}, \, \ldots\}$

• A random variable X is called a **continuous** random variable if it can take values on a continuous scale, i.e.,

 $x \in \{x: a < x < b; a, b \in R\}$

In most practical problems:

• A discrete random variable represents count data, such as the number of defectives in a sample of k items.

• A continuous random variable represents measured data, such as height.

1.2 Discrete Probability Distributions

• A discrete random variable X assumes each of its values with a certain probability.

Example 2:

- Experiment: tossing a non-balance coin 2 times independently.

- H= head , T=tail
- Sample space: S={HH, HT, TH, TT}
- Suppose $P(H)=\frac{1}{2}P(T) \Leftrightarrow P(H)=\frac{1}{3}$ and $P(T)=\frac{2}{3}$
- Let X= number of heads

Sample point	Probability	Value of X
(Outcome)		(x)
HH	$P(HH)=P(H) P(H)=1/3 \times 1/3 = 1/9$	2
HT	$P(HT)=P(H) P(T)=1/3 \times 2/3 = 2/9$	1
TH	$P(TH)=P(T) P(H)=2/3 \times 1/3 = 2/9$	1
TT	$P(TT)=P(T) P(T)=2/3 \times 2/3 = 4/9$	0

- The possible values of X are: 0, 1, and 2.
- X is a discrete random variable.
- Define the following events:

Event (X=x)	Probability = P(X=x)
(X=0)={TT}	P(X=0) = P(TT)=4/9
(X=1)={HT,TH}	P(X=1) =P(HT)+P(TH)=2/9+2/9=4/9
(X=2)={HH}	P(X=2) = P(HH) = 1/9

The possible values of X with their probabilities are:

Х	0	1	2	Total
P(X=x)=f(x)	4/9	4/9	1/9	1.00

The function f(x)=P(X=x) is called the probability function (probability distribution) of the discrete random variable X.

Definition 2:

The function f(x) is a probability function of a discrete random variable X if, for each possible values x, we have:

- 1) $f(x) \ge 0$ 2) $\sum_{all x} f(x) = 1$
- 3) f(x) = P(X=x)

Note:

$$P(X \in A) = \sum_{all x \in A} f(x) = \sum_{all x \in A} P(X = x)$$

Example 3:

For the previous example, we have:

Х	0	1	2	Total
f(x) = P(X=x)	4/9	4/9	1/9	$\sum_{x=0}^{2} f(x) = 1$

$$P(X<1) = P(X=0)=4/9$$

$$P(X\le1) = P(X=0) + P(X=1) = 4/9+4/9 = 8/9$$

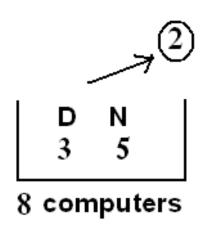
$$P(X\ge0.5) = P(X=1) + P(X=2) = 4/9+1/9 = 5/9$$

$$P(X>8) = P(\phi) = 0$$

$$P(X<10) = P(X=0) + P(X=1) + P(X=2) = P(S) = 1$$

Example 4:

A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective and 5 are non-defective. If a school makes a random purchase of 2 of these computers, find the probability distribution of the number of defectives.



Solution:

We need to find the probability distribution of the random variable: X = the number of defective computers purchased. Experiment: selecting 2 computers at random out of 8 $n(S) = \binom{8}{2}$ equally likely outcomes The possible values of X are: x=0, 1, 2. Consider the events:

$$(X=0) = \{0D \text{ and } 2N\} \Rightarrow n(X=0) = \binom{3}{0} \times \binom{5}{2}$$
$$(X=1) = \{1D \text{ and } 1N\} \Rightarrow n(X=1) = \binom{3}{1} \times \binom{5}{1}$$
$$(X=2) = \{2D \text{ and } 0N\} \Rightarrow n(X=2) = \binom{3}{2} \times \binom{5}{0}$$
$$f(0) = P(X=0) = \frac{n(X=0)}{n(S)} = \frac{\binom{3}{0} \times \binom{5}{2}}{\binom{8}{2}} = \frac{10}{28}$$

$$f(1) = P(X = 1) = \frac{n(X = 1)}{n(S)} = \frac{\binom{3}{1} \times \binom{5}{1}}{\binom{8}{2}} = \frac{15}{28}$$

$$f(2) = P(X = 2) = \frac{n(X = 2)}{n(S)} = \frac{\binom{3}{2} \times \binom{5}{0}}{\binom{8}{2}} = \frac{3}{28}$$
In general, for x=0,1, 2, we have:
$$f(x) = P(X = x) = \frac{n(X = x)}{n(S)} = \frac{\binom{3}{x} \times \binom{5}{2-x}}{\binom{8}{2}} = \frac{\binom{3}{x} \times \binom{5}{2-x}}{\binom{8}{2}}$$

The probability distribution of X is:

x012Totalf(x)= P(X=x)
$$\frac{10}{28}$$
 $\frac{15}{28}$ $\frac{3}{28}$ 1.00

$$f(x) = P(X = x) = \begin{cases} \frac{\binom{3}{x} \times \binom{5}{2-x}}{\binom{8}{2}}; x = 0, 1, 2\\ \frac{\binom{8}{2}}{0}; otherwise \end{cases}$$
 Hypergeometric Distribution

Cumulative distribution function (CDF), F(x) of discrete R.V. **Definition 3:**

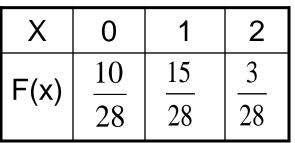
Distribution

The cumulative distribution function (CDF), F(x), of a discrete random variable X with the probability function f(x) is given by:

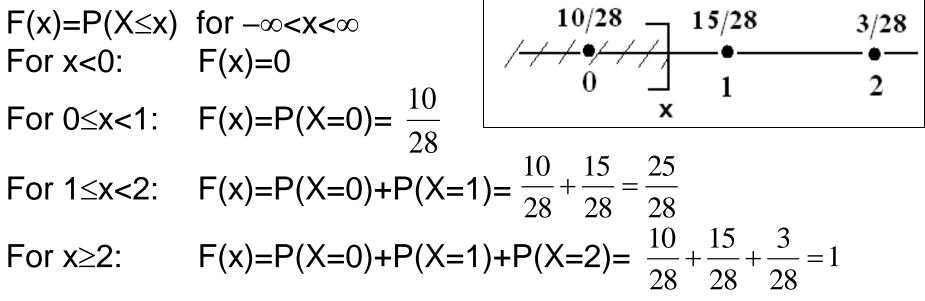
$$F(x) = P(X \le x) = \sum_{t \le x} f(t) = \sum_{t \le x} P(X = t); \text{ for } -\infty < x < \infty$$

Example 5:

Find the CDF of the random variable X with the probability function:



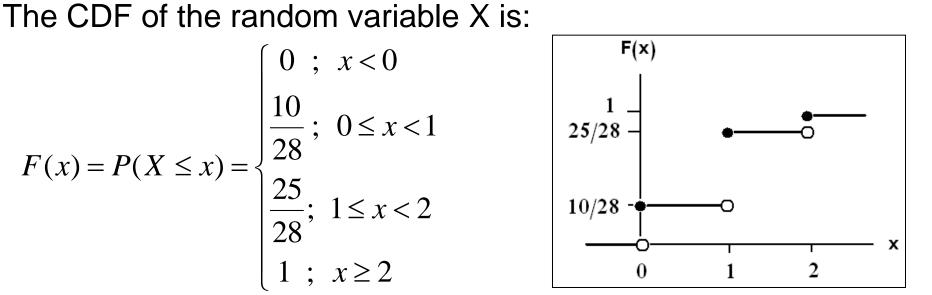
Solution:



 $P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$ $P(a \le X \le b) = P(a < X \le b) + P(X=a) = F(b) - F(a) + f(a)$ $P(a < X < b) = P(a < X \le b) - P(X=b) = F(b) - F(a) - f(b)$

 $F(-0.5) = P(X \le -0.5) = 0$ F(1.5)=P(X \le 1.5)=F(1) = $\frac{25}{28}$ $F(3.8) = P(X \le 3.8) = F(2) = 1$

$$F(x) = P(X \le x) = \begin{cases} 0 \ ; \ x < 0 \\ \frac{10}{28} \ ; \ 0 \le x < 1 \\ \frac{25}{28} \ ; \ 1 \le x < 2 \\ 1 \ ; \ x \ge 2 \end{cases}$$



Result:

Suppose that the probability function of X is:

Х	x ₁	x ₂	x ₃	•••	x _n
f(x)	$f(x_1)$	f(x ₂)	f(x ₃)	• • •	f(x _n)

Where
$$x_1 < x_2 < ... < x_n$$
. Then:
 $F(x_i) = f(x_1) + f(x_2) + ... + f(x_i)$; i=1, 2, ..., n
 $F(x_i) = F(x_{i-1}) + f(x_i)$; i=2, ..., n
 $f(x_i) = F(x_i) - F(x_{i-1})$

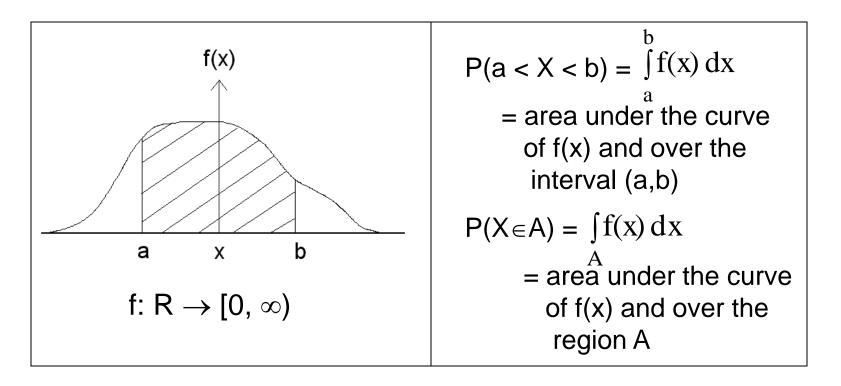
Example 6:

In the previous example,
P(0.5 < X ≤ 1.5) = F(1.5) - F(0.5) =
$$\frac{25}{28} - \frac{10}{28} = \frac{15}{28}$$

P(1 < X ≤ 2) = F(2) - F(1) = $1 - \frac{25}{28} = \frac{3}{28}$

1.3. Continuous Probability Distributions

For any continuous random variable, X, there exists a nonnegative function f(x), called the probability density function (p.d.f) through which we can find probabilities of events expressed in term of X.



Definition 4:

The function f(x) is a probability density function (pdf) for a continuous random variable X, defined on the set of real numbers, if:

- 1. $f(x) \ge 0 \quad \forall x \in R$
- 2. $\int f(x) dx = 1$ 3. $P(a \le X \le b) = \int_{a}^{b} f(x) dx$

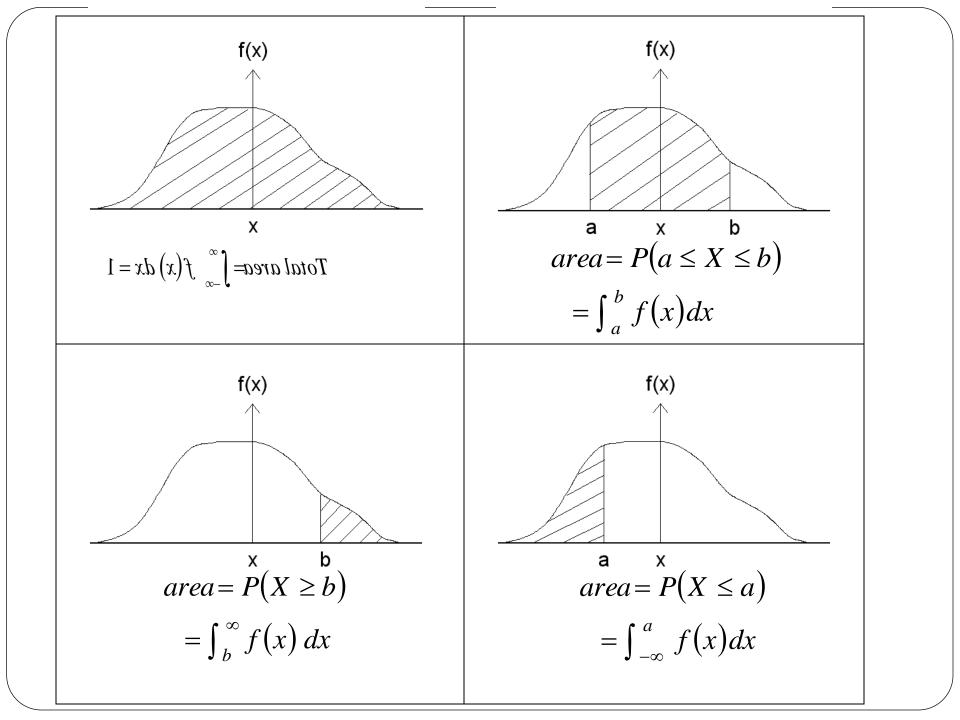
Note:

For a continuous random variable X, we have:

1.
$$f(x) \neq P(X=x)$$
 (in general)

- 2. P(X=a) = 0 for any $a \in R$
- 3. $P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$

4.
$$P(X \in A) = \int_{A} f(x) dx$$



Example 7:

Suppose that the error in the reaction temperature, in °C, for a controlled laboratory experiment is a continuous random variable X having the following probability density function:

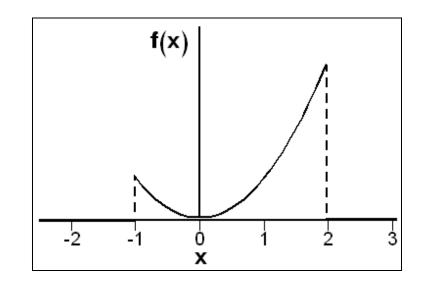
$$f(x) = \begin{cases} \frac{1}{3}x^2; -1 < x < 2\\ 0; elsewhere \end{cases}$$

- 1. Verify that (a) $f(x) \ge 0$ and (b) $\int_{0}^{\infty} f(x) dx = 1$
- 2. Find $P(0 < X \le 1)$

Solution:

- X = the error in the reaction temperature in °C.
- X is continuous r. v.

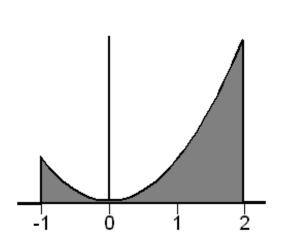
$$f(x) = \begin{cases} \frac{1}{3}x^2; -1 < x < 2\\ 0; elsewhere \end{cases}$$

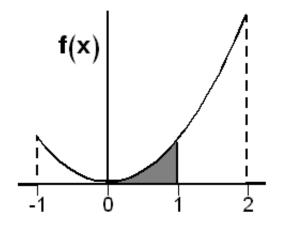


1. (a) $f(x) \ge 0$ because f(x) is a quadratic function.

(b)
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{-1} 0 dx + \int_{-1}^{2} \frac{1}{3} x^{2} dx + \int_{2}^{\infty} 0 dx$$
$$= \int_{-1}^{2} \frac{1}{3} x^{2} dx = \left[\frac{1}{9} x^{3} \mid \begin{array}{l} x = 2\\ x = -1 \end{array}\right]$$
$$= \frac{1}{9} (8 - (-1)) = 1$$

2.
$$P(0 < X \le 1) = \int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{1}{3} x^{2} dx$$
$$= \left[\frac{1}{9} x^{3} \mid \begin{array}{l} x = 1\\ x = 0 \end{array}\right]$$
$$= \frac{1}{9} (1 - (0))$$
$$= \frac{1}{9}$$





The cumulative distribution function (CDF), F(x), Definition 5:

The cumulative distribution function (CDF), F(x), of a continuous random variable X with probability density function f(x) is given by:

$$F(x) = P(X \le x) = \int_{-\infty}^{\infty} f(t) dt; \quad \text{for } -\infty < x < \infty$$

Result:

 $P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$

Example 8:

in Example 7, 1.Find the CDF 2.Using the CDF, find $P(0 < X \le 1)$.

Solution:

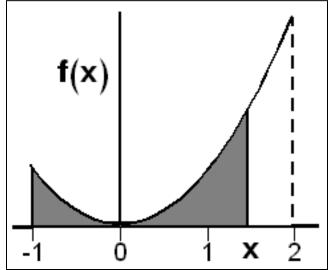
$$f(x) = \begin{cases} \frac{1}{3}x^{2}; -1 < x < 2 \\ 0; elsewhere \end{cases}$$
For x< -1:

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0$$
For -1 < x<2:

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{-1} 0 dt + \int_{-1}^{x} \frac{1}{3}t^{2} dt$$

$$= \int_{-1}^{x} \frac{1}{3}t^{2} dt$$

$$= \left[\frac{1}{9}t^{3} \mid t = x \\ t = -1\right] = \frac{1}{9}(x^{3} - (-1)) = \frac{1}{9}(x^{3} + 1)$$



Exercise

$$p(1 < x < 2) = \int_{1}^{2} (1/9) x^{2} dx = \frac{x^{3}}{27} \Big]_{x=1}^{x=2} = \frac{7}{27} \text{ and}$$

Since X is continous the prob. $p(X = x) = 0$:
 $p(1 \le X \le 2) = p(1 < X \le 2) = p(1 \le X < 2)$
 $= p(1 < X < 2) = \frac{7}{27}.$
From CDF we can also find this probability
 $F(x) = \int_{0}^{x} (1/9) u^{2} du = \frac{x^{3}}{27}.$ Therefore
 $F(x) = \begin{cases} 0, & \text{if } x < 0 \\ \frac{x^{3}}{27}, & \text{if } 0 < x < 3 \\ 1, & \text{if } x > 3 \end{cases}$
 $p(1 < X < 2) = F(2) - F(1) = \frac{2^{3}}{27} - \frac{1^{3}}{27} = \frac{7}{27} \end{cases}$ ²

<u>Exercise</u>

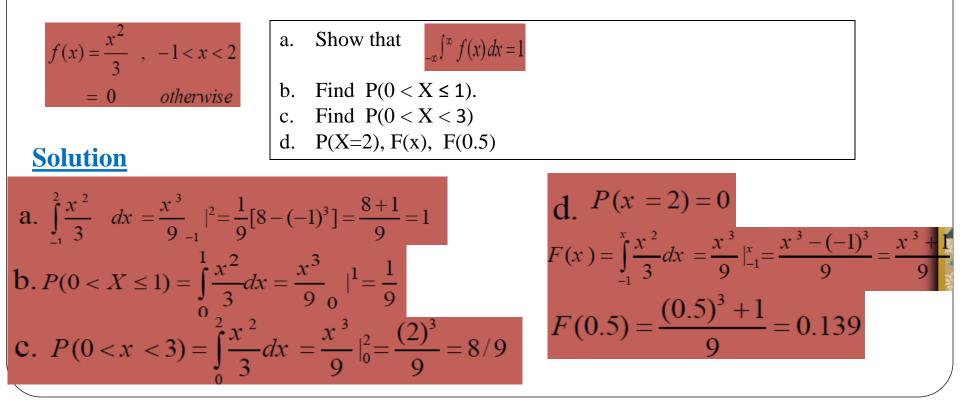
(a) Find C such that the following is probability Density function (pdf) :

$$f(x) = \begin{cases} Cx^2, \ 0 < x < 3 \\ = o, \ otherwise \end{cases}$$

(b) Find CDF and P(1<x<2)

Exercise

Suppose that the error in the reaction temperature in C 0 for a controlled laboratory experiment is a continuous random variable X having the probability density function:



Example

Number of	frequenc	P(X=x)	F(x)=
Programs	У		P(X≤x)
1	62	0.2088	0.2088
2	47	0.1582	0.3670
3	39	0.1313	0.4983
4	39	0.1313	0.6296
5	58	0.1953	0.8249
6	37	0.1246	0.9495
7	4	0.0135	0.9630
8	11	0.0370	1.0000
Total	297	1.0000	22

Exercise 2

Find probability mass function and probability distribution for the following random variables:

1- X denote the sum of two upper most faces when two dice are thrown:

2-Y denote the no. of heads minus the no. of tails when 3 coins are thrown

Exercise 3

1-The probability mass function is given by X: 1 2 3 f(x): $\frac{1}{2}$ c

Construct a table for Distribution function F(x) after determining C.

Find the following probabilities:

 $P(1{\leq}X{\leq}3)$, $P(X{\geq}2)$, P(X{<}3)