Chapter 1 Random Variables and Probability Distributions

1.1 Concept of a Random Variable:

In a statistical experiment, it is often very important to allocate numerical values to the outcomes.

Example 1:

- Experiment: testing two components. (D=defective,
$\mathrm{N}=$ non-defective)
- Sample space: $S=\{D D, D N, N D, N N\}$

Let $X=$ number of defective components when two components are tested.

- Assigned numerical values to the outcomes are:

Sample point (Outcome)	Assigned Numerical Value (x)
DD	2
DN	1
ND	1
NN	0

ONotice that, the set of all possible values of the random variable X is $\{0,1,2\}$.

Definition 1:

A random variable X is a function that associates each element in the sample space with a real number (i.e., $\mathrm{X}: S \rightarrow$ R.)

Notation: " X " denotes the random variable .
" x " denotes a value of the random variable X.

Types of Random Variables:

A random variable X is called a discrete random variable if its set of possible values is countable, i.e., .$x \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ or $x \in\left\{x_{1}, x_{2}, \ldots\right\}$

A random variable X is called a continuous random variable if it can take values on a continuous scale, i.e.,

$$
x \in\{x: a<x<b ; a, b \in R\}
$$

- In most practical problems:
- A discrete random variable represents count data, such as the number of defectives in a sample of k items.

A continuous random variable represents measured data, such as height.

1.2 Discrete Probability Distributions

A discrete random variable X assumes each of its values with a certain probability.

Example 2:

Experiment: tossing a non-balance coin 2 times independently.

- $\mathrm{H}=$ head, $\mathrm{T}=$ tail
- Sample space: $S=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

Suppose $P(H)=1 / 2 P(T) \Leftrightarrow P(H)=1 / 3$ and $P(T)=2 / 3$
Let $X=$ number of heads

Sample point (Outcome)	Probability	Value of X (x)
HH	$\mathrm{P}(\mathrm{HH})=\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{H})=1 / 3 \times 1 / 3=1 / 9$	2
HT	$\mathrm{P}(\mathrm{HT})=\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{T})=1 / 3 \times 2 / 3=2 / 9$	1
TH	$\mathrm{P}(\mathrm{TH})=\mathrm{P}(\mathrm{T}) \mathrm{P}(\mathrm{H})=2 / 3 \times 1 / 3=2 / 9$	1
TT	$\mathrm{P}(\mathrm{TT})=\mathrm{P}(\mathrm{T}) \mathrm{P}(\mathrm{T})=2 / 3 \times 2 / 3=4 / 9$	0

The possible values of X are: 0,1 , and 2 .
X is a discrete random variable.
Define the following events:

Event $(X=x)$	Probability $=P(X=x)$
$(X=0)=\{T T\}$	$P(X=0)=P(T T)=4 / 9$
$(X=1)=\{H T, T H\}$	$P(X=1)=P(H T)+P(T H)=2 / 9+2 / 9=4 / 9$
$(X=2)=\{H H\}$	$P(X=2)=P(H H)=1 / 9$

The possible values of X with their probabilities are:

X	0	1	2	Total
$P(X=x)=f(x)$	$4 / 9$	$4 / 9$	$1 / 9$	1.00

The function $f(x)=P(X=x)$ is called the probability function (probability distribution) of the discrete random variable X .

Definition 2:

The function $f(x)$ is a probability function of a discrete random variable X if, for each possible values x, we have:

1) $\mathrm{f}(\mathrm{x}) \geq 0$
2) $\sum_{\text {all } x} f(x)=1$
3) $f(x)=P(X=x)$

Note:

$$
\mathrm{P}(\mathrm{X} \in \mathrm{~A})=\sum_{\text {all } x \in \mathrm{~A}} \mathrm{f}(\mathrm{x})=\sum_{\text {all } x \in \mathrm{~A}} \mathrm{P}(\mathrm{X}=\mathrm{x})
$$

Example 3:

For the previous example, we have:

X	0	1	2	Total
$\mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})$	$4 / 9$	$4 / 9$	$1 / 9$	$\sum_{x=0}^{2} f(x)=1$

```
\(P(X<1)=P(X=0)=4 / 9\)
\(P(X \leq 1)=P(X=0)+P(X=1)=4 / 9+4 / 9=8 / 9\)
\(P(X \geq 0.5)=P(X=1)+P(X=2)=4 / 9+1 / 9=5 / 9\)
\(P(X>8)=P(\phi)=0\)
\(P(X<10)=P(X=0)+P(X=1)+P(X=2)=P(S)=1\)
```


Example 4:

```
A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective and 5 are non-defective. If a school makes a random purchase of 2 of these computers, find the probability distribution of the number of defectives.
```


Solution:
We need to find the probability distribution of the random variable: $\mathrm{X}=$ the number of defective computers purchased.

Experiment: selecting 2 computers at random out of 8

$$
n(S)=\binom{8}{2} \text { equally likely outcomes }
$$

The possible values of X are: $x=0,1,2$.
Consider the events:

$$
\begin{aligned}
& (X=0)=\{0 D \text { and } 2 N\} \Rightarrow n(X=0)=\binom{3}{0} \times\binom{ 5}{2} \\
& (X=1)=\{1 D \text { and } 1 N\} \Rightarrow n(X=1)=\binom{3}{1} \times\binom{ 5}{1} \\
& (X=2)=\{2 D \text { and } 0 N\} \Rightarrow n(X=2)=\binom{3}{2} \times\binom{ 5}{0} \\
& f(0)=P(X=0)=\frac{n(X=0)}{n(S)}=\frac{\binom{3}{0} \times\binom{ 5}{2}}{\binom{8}{2}}=\frac{10}{28}
\end{aligned}
$$

$$
\begin{aligned}
& f(1)=P(X=1)=\frac{n(X=1)}{n(S)}=\frac{\binom{3}{1} \times\binom{ 5}{1}}{\binom{8}{2}}=\frac{15}{28} \\
& f(2)=P(X=2)=\frac{\mathrm{n}(\mathrm{X}=2)}{\mathrm{n}(\mathrm{~S})}=\frac{\binom{3}{2} \times\binom{ 5}{0}}{\binom{8}{2}}=\frac{3}{28} \\
& \mathrm{In} \text { general, for } \mathrm{x}=0,1,2 \text {, we have: } \\
& \mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})=\frac{\mathrm{n}(\mathrm{X}=\mathrm{x})}{\mathrm{n}(\mathrm{~S})}=\frac{\binom{3}{\mathrm{x}} \times\binom{ 5}{2-\mathrm{x}}}{\binom{8}{2}}
\end{aligned}
$$

The probability distribution of X is:

$$
\begin{array}{|c|c|c|c|c|}
\hline x & 0 & 1 & 2 & \text { Total } \\
\hline f(x)=P(X=x) & \frac{10}{28} & \frac{15}{28} & \frac{3}{28} & 1.00 \\
\hline
\end{array}
$$

$$
f(x)=P(X=x)=\left\{\begin{array}{l}
\binom{3}{x} \times\binom{ 5}{2-x} \\
\binom{8}{2}
\end{array} x=0,1,2\right.
$$

Hypergeometric Distribution

Cumulative distribution function (CDF), $F(x)$ of discrete R.V.

 Definition 3:The cumulative distribution function (CDF), $\mathrm{F}(\mathrm{x})$, of a discrete random variable X with the probability function $f(x)$ is given by:

$$
F(x)=P(X \leq x)=\sum_{t \leq x} f(t)=\sum_{t \leq x} P(X=t) ; \quad \text { for }-\infty<x<\infty
$$

Example 5:

Find the CDF of the random variable X with the probability function:

X	0	1	2
$F(x)$	$\frac{10}{28}$	$\frac{15}{28}$	$\frac{3}{28}$

Solution:

$F(x)=P(X \leq x)$ for $-\infty<x<\infty$
For $x<0$: $\quad F(x)=0$
For $0 \leq x<1: \quad F(x)=P(X=0)=\frac{10}{28}$

For $1 \leq x<2: \quad F(x)=P(X=0)+P(X=1)=\frac{10}{28}+\frac{15}{28}=\frac{25}{28}$
For $x \geq 2$:

$$
F(x)=P(X=0)+P(X=1)+P(X=2)=\frac{10}{28}+\frac{15}{28}+\frac{3}{28}=1
$$

The CDF of the random variable X is:

$$
F(x)=P(X \leq x)=\left\{\begin{array}{cl}
0 ; & x<0 \\
\frac{10}{28} ; & 0 \leq x<1 \\
\frac{25}{28} ; & 1 \leq x<2 \\
1 ; & x \geq 2
\end{array}\right.
$$

Note:
$F(-0.5)=P(X \leq-0.5)=0$ $\frac{25}{28}$
$F(3.8)=P(X \leq 3.8)=F(2)=1$

Result:

$P(a<X \leq b)=P(X \leq b)-P(X \leq a)=F(b)-F(a)$
$P(a \leq X \leq b)=P(a<X \leq b)+P(X=a)=F(b)-F(a)+f(a)$
$P(a<X<b)=P(a<X \leq b)-P(X=b)=F(b)-F(a)-f(b)$

Result:

Suppose that the probability function of X is:

x	x_{1}	x_{2}	x_{3}	\cdots	x_{n}
$f(x)$	$f\left(x_{1}\right)$	$f\left(x_{2}\right)$	$f\left(x_{3}\right)$	\cdots	$f\left(x_{n}\right)$

Where $x_{1}<x_{2}<\ldots<x_{n}$. Then:
$F\left(x_{i}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{i}\right) ; i=1,2, \ldots, n$
$F\left(x_{i}\right)=F\left(x_{i-1}\right)+f\left(x_{i}\right) ; i=2, \ldots, n$
$f\left(x_{i}\right)=F\left(x_{i}\right)-F\left(x_{i-1}\right)$

Example 6:

In the previous example,
$P(0.5<X \leq 1.5)=F(1.5)-F(0.5)=\frac{25}{28}-\frac{10}{28}=\frac{15}{28}$
$P(1<X \leq 2)=F(2)-F(1)=1-\frac{25}{28}=\frac{3}{28}$

1.3. Continuous Probability Distributions

For any continuous random variable, X , there exists a nonnegative function $\mathrm{f}(\mathrm{x})$, called the probability density function (p.d.f) through which we can find probabilities of events expressed in term of X .

$$
\begin{aligned}
& \mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\int_{\mathrm{a}}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\
& =\text { area under the curve } \\
& \text { of } \mathrm{f}(\mathrm{x}) \text { and over the } \\
& \text { interval }(\mathrm{a}, \mathrm{~b}) \\
& \mathrm{P}(\mathrm{X} \in \mathrm{~A})=\int \mathrm{f}(\mathrm{x}) \mathrm{dx} \\
& = \\
& \text { area under the curve } \\
& \text { of } \mathrm{f}(\mathrm{x}) \text { and over the } \\
& \text { region } \mathrm{A}
\end{aligned}
$$

Definition 4:

The function $f(x)$ is a probability density function (pdf) for a continuous random variable X , defined on the set of real numbers, if:

1. ${ }_{\infty}^{f(x)} \geq 0 \quad \forall x \in R$
2. $\int f(x) d x=1$
3. ${ }^{-\infty} \mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx} \quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{R} ; \mathrm{a} \leq \mathrm{b}$

Note:

For a continuous random variable X , we have:

1. $f(x) \neq P(X=x)$ (in general)
2. $P(X=a)=0$ for any $a \in R$
3. $\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})=\mathrm{P}(\mathrm{a}<\mathrm{X} \leq \mathrm{b})=\mathrm{P}(\mathrm{a} \leq \mathrm{X}<\mathrm{b})=\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})$
4. $P(X \in A)=\int_{A} f(x) d x$

Example 7:
Suppose that the error in the reaction temperature, in ${ }^{\circ} \mathrm{C}$, for a controlled laboratory experiment is a continuous random variable X having the following probability density function:

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{3} x^{2} ;-1<x<2 \\
0 ; \text { elsewhere }
\end{array}\right.
$$

1. Verify that (a) $f(x) \geq 0$ and (b) $\int^{\infty} f(x) d x=1$
2. Find $P(0<X \leq 1)$

Solution:

$X=$ the error in the reaction temperature in ${ }^{\circ} \mathrm{C}$.
X is continuous r . v .

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{3} x^{2} ;-1<x<2 \\
0 ; \text { elsewhere }
\end{array}\right.
$$

1. (a) $f(x) \geq 0$ because $f(x)$ is a quadratic function.
(b) $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{-1} 0 d x+\int_{-1}^{2} \frac{1}{3} x^{2} d x+\int_{2}^{\infty} 0 d x$
$=\int_{-1}^{2} \frac{1}{3} x^{2} d x=\left[\begin{array}{l|l}\frac{1}{9} x^{3} & \left.\begin{array}{l}x=2 \\ x=-1\end{array}\right]\end{array}\right.$
$=\frac{1}{9}(8-(-1))=1$

2. $\mathrm{P}(0<\mathrm{X} \leq 1)=\int_{0}^{1} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_{0}^{1} \frac{1}{3} x^{2} \mathrm{dx}$

$$
\begin{aligned}
& =\left[\frac{1}{9} x^{3} \left\lvert\, \begin{array}{ll}
x=1 \\
x=0
\end{array}\right.\right] \\
& =\frac{1}{9}(1-(0)) \\
& =\frac{1}{9}
\end{aligned}
$$

The cumulative distribution function (CDF), $F(x)$,

Definition 5:

The cumulative distribution function (CDF), $\mathrm{F}(\mathrm{x})$, of a continuous random variable X with probability density function $f(x)$ is given by:

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t ; \quad \text { for }-\infty<x<\infty
$$

Result:
$P(a<X \leq b)=P(X \leq b)-P(X \leq a)=F(b)-F(a)$
Example 8:
in Example 7,

1. Find the CDF
2. Using the CDF, find $P(0<X \leq 1)$.

Solution:

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{3} x^{2} ;-1<x<2 \\
0 ; \text { elsewhere }
\end{array}\right.
$$

For $\mathrm{x}<-1$:

$$
\mathrm{F}(\mathrm{x})=\int_{-\infty}^{x} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\int_{-\infty}^{x} 0 \mathrm{dt}=0
$$

For $-1 \leq x<2$:

$$
\begin{aligned}
\mathrm{F}(\mathrm{x}) & =\int_{-\infty}^{x} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\int_{-\infty}^{-1} 0 \mathrm{dt}+\int_{-1}^{x} \frac{1}{3} t^{2} \mathrm{dt} \\
& =\int_{-1}^{x} \frac{1}{3} \mathrm{t}^{2} \mathrm{dt} \\
& =\left[\frac{1}{9} \mathrm{t}^{3} \left\lvert\, \begin{array}{l}
\mathrm{t}=\mathrm{x} \\
\mathrm{t}=-1
\end{array}\right.\right]=\frac{1}{9}\left(\mathrm{x}^{3}-(-1)\right)=\frac{1}{9}\left(\mathrm{x}^{3}+1\right)
\end{aligned}
$$

For $x \geq 2$:

$$
\mathrm{F}(\mathrm{x})=\int_{-\infty}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\int_{-\infty}^{-1} 0 \mathrm{dt}+\int_{-1}^{2} \frac{1}{3} \mathrm{t}^{2} \mathrm{dt}+\int_{2}^{x} 0 \mathrm{dt}=\int_{-1}^{2} \frac{1}{3} \mathrm{t}^{2} \mathrm{dt}=1
$$

Therefore, the CDF is:

$$
F(x)=P(X \leq x)=\left\{\begin{array}{l}
0 ; x<-1 \\
\frac{1}{9}\left(x^{3}+1\right) ;-1 \leq x<2 \\
1 ; x \geq 2
\end{array}\right.
$$

2. Using the CDF,
$P(0<X \leq 1)=F(1)-F(0)=\frac{2}{9}-\frac{1}{9}=\frac{1}{9}$

Exercise

$$
\left.p(1<x<2)=\int_{1}^{2}(1 / 9) x^{2} d x=\frac{x^{3}}{27}\right]_{x=1}^{x=2}=\frac{7}{27} \text { and }
$$

Since X is continous the prob. $\mathrm{p}(\mathrm{X}=\mathrm{x})=0$: $p(1 \leq X \leq 2)=p(1<X \leq 2)=p(1 \leq X<2)$
$=p(1<X<2)=\frac{7}{27}$.
From CDF we can also find this probability
$\mathrm{F}(\mathrm{x})=\int_{0}^{x}(1 / 9) u^{2} d u=\frac{x^{3}}{27}$. Therefore
$\mathrm{F}(\mathrm{x})= \begin{cases}0, & \text { if } \mathrm{x}<\mathrm{O} \\ \frac{x^{3}}{27}, & \text { if } \mathrm{o}<\mathrm{x}<3 \\ 1, & \text { if } \mathrm{x}>3\end{cases}$
$\mathrm{p}(1<\mathrm{X}<2)=\mathrm{F}(2)-\mathrm{F}(1)=\frac{2^{3}}{27}-\frac{1^{3}}{27}=\frac{7}{27}$

Exercise

(a) Find C such that the following is probabilty Density function (pdf) :
(b) Find CDF and $\mathrm{P}(1<\mathrm{x}<2)$

$$
f(x)=\left\{\begin{array}{l}
C x^{2}, 0<x<3 \\
=o, \text { otherwise }
\end{array}\right.
$$

Exercise

Suppose that the error in the reaction temperature in C 0 for a controlled laboratory experiment is a continuous random variable X having the probability density function:

```
f(x)=\frac{\mp@subsup{x}{}{2}}{3},-1<x<2
    =0 otherwise
```

a. Show that $\int_{-x} \int^{x} f(x) d x=1$
b. Find $\mathrm{P}(0<\mathrm{X} \leq 1)$.
c. Find $\mathrm{P}(0<\mathrm{X}<3)$
d. $\quad \mathrm{P}(\mathrm{X}=2), \mathrm{F}(\mathrm{x}), \mathrm{F}(0.5)$

Solution

a. $\int_{-1}^{2} \frac{x^{2}}{3} d x=\left.\frac{x^{3}}{9}\right|_{-1} ^{2}=\frac{1}{9}\left[8-(-1)^{3}\right]=\frac{8+1}{9}=1$
b. $P(0<X \leq 1)=\int_{0}^{1} \frac{x^{2}}{3} d x=\left.\frac{x^{3}}{9}\right|_{0} ^{1}=\frac{1}{9}$
c. $P(0<x<3)=\int_{0}^{2} \frac{x^{2}}{3} d x=\left.\frac{x^{3}}{9}\right|_{0} ^{2}=\frac{(2)^{3}}{9}=8 / 9$

$$
\begin{aligned}
& \text { d. } P(x=2)=0 \\
& F(x)=\int_{-1}^{x} \frac{x^{2}}{3} d x=\left.\frac{x^{3}}{9}\right|_{-1} ^{x}=\frac{x^{3}-(-1)^{3}}{9}=\frac{x^{3}+1}{9} \\
& F(0.5)=\frac{(0.5)^{3}+1}{9}=0.139
\end{aligned}
$$

Example
Number of frequenc $P(X=x) \quad F(x)=$
Programs

1	62	0.2088	0.2088
2	47	0.1582	0.3670
3	39	0.1313	0.4983
4	39	0.1313	0.6296
5	58	0.1953	0.8249
6	37	0.1246	0.9495
7	4	0.0135	0.9630
8	11	0.0370	1.0000
Total	297	1.0000	

Exercise 2

Find probability mass function and probability distribution for the following random variables:
1- X denote the sum of two upper most faces when two dice are thrown:
2- Y denote the no. of heads minus the no. of tails when 3 coins are thrown

Exercise 3

1-The probability mass function is given by $\mathrm{X}: 123$
$\mathrm{f}(\mathrm{x}): 1 / 2 \mathrm{c}$
Construct a table for Distribution function $\mathrm{F}(\mathrm{x})$ after determining C .
Find the following probabilities:
$\mathrm{P}(1 \leq \mathrm{X} \leq 3), \mathrm{P}(\mathrm{X} \geq 2), \mathrm{P}(\mathrm{X}<3)$

