1. Determine the initial direction of the deflection of charged particles as they enter the magnetic fields as shown in Figure P29.1.

(b)

(c)

(d)

2. A proton travels with a speed of $3.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$ at an angle of 37.0° with the direction of a magnetic field of 0.300 T in the $+y$ direction. What are (a) the magnitude of the magnetic force on the proton and (b) its acceleration?
3. A proton moves perpendicular to a uniform magnetic field \mathbf{B} at $1.00 \times$ $10^{7} \mathrm{~m} / \mathrm{s}$ and experiences an acceleration of $2.00 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}$ in the $+x$ direction when its velocity is in the $+z$ direction. Determine the magnitude and direction of the field.
4. An electron is accelerated through 2400 V from rest and then enters a uniform 1.70-T magnetic field. What are (a) the maximum and (b) the minimum values of the magnetic force this charge can experience?
5. A proton moving at $4.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$ through a magnetic field of 1.70 T experiences a magnetic force of magnitude $8.20 \times 10^{-13} \mathrm{~N}$. What is the angle between the proton's velocity and the field?
