11. A wire having a mass per unit length of $0.500 \mathrm{~g} / \mathrm{cm}$ carries a $2.00-\mathrm{A}$ current horizontally to the south. What are the direction and magnitude of the minimum magnetic field needed to lift this wire vertically upward?
12. A wire carries a steady current of 2.40 A . A straight section of the wire is 0.750 m long and lies along the x axis within a uniform magnetic field, $\mathbf{B}=$ $1.60 \mathbf{k} \mathrm{~T}$. If the current is in the $+x$ direction, what is the magnetic force on the section of wire?
13. A wire 2.80 m in length carries a current of 5.00 A in a region where a uniform magnetic field has a magnitude of 0.390 T . Calculate the magnitude of the magnetic force on the wire assuming the angle between the magnetic field and the current is (a) 60.0°, (b) 90.0°, (c) 120°.

Section 29.4 Motion of a Charged Particle in a Uniform Magnetic Field

29. The magnetic field of the Earth at a certain location is directed vertically downward and has a magnitude of $50.0 \mu \mathrm{~T}$. A proton is moving horizontally toward the west in this field with a speed of $6.20 \times 10^{6} \mathrm{~m} / \mathrm{s}$. (a) What are the direction and magnitude of the magnetic force the field exerts on this charge? (b) What is the radius of the circular arc followed by this proton?
30. A singly charged positive ion has a mass of $3.20 \times 10^{-26} \mathrm{~kg}$. After being accelerated from rest through a potential difference of 833 V , the ion enters a magnetic field of 0.920 T along a direction perpendicular to the direction of the field. Calculate the radius of the path of the ion in the field.

A proton moving freely in a circular path perpendicular to a constant magnetic field takes 1.00μ s to complete one revolution. Determine the magnitude of the magnetic field.
40. A velocity selector consists of electric and magnetic fields described by the expressions $\mathbf{E}=E \mathbf{k}$ and $\mathbf{B}=B \mathbf{j}$, with $B=15.0 \mathrm{mT}$. Find the value of E such that a $750-\mathrm{eV}$ electron moving along the positive x axis is undeflected.

http://safeshare.tv/w/OLZULGiyni

http://safeshare.tv/w/vJhWtEjqLB

