23. Figure P30.23 is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, which is surrounded by an outer conductor, which is surrounded by another rubber layer. In a particular application, the current in the inner conductor is 1.00 A out of the page and the current in the outer conductor is 3.00 A into the page. Determine the magnitude and direction of the magnetic field at points *a* and *b*.

Figure P30.23

33. A single-turn square loop of wire, 2.00 cm on each edge, carries a clockwise current of 0.200 A. The loop is inside a solenoid, with the plane of the loop perpendicular to the magnetic field of the solenoid. The solenoid has 30 turns/cm and carries a clockwise current of 15.0 A. Find the force on each side of the loop.

A cube of edge length $\ell = 2.50$ cm is positioned as shown in Figure P30.35. A uniform magnetic field given by $\mathbf{B} = (5\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 3\hat{\mathbf{k}})T$ exists throughout the region. (a) Calculate the flux through the shaded face. (b) What is the total flux through the six faces?

Figure P30.35