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Antiderivative and indefinite integral

Definition 1.1

Let f : I — R be a function defined on an interval I. A function
F : I — R is called an antiderivative of f on I if I is differentiable on I
and F'(x) = f(x), forall z € I.

Example 1.1

There are many antiderivatives of the function f(z) = 2z on R such as:

3
Fi(z) =22+ 1, Fy(z) = 22, F3(z) = 22 + 5 Fy=z2-5.
Thus, all function F(z) = 22 + ¢, with ¢ is a constant, is an antiderivative

of f(z) = 2z.

BEN AMIRA Aymen (King Saud University) Integral Calculus (Math 228)



Antiderivative and indefinite integral

Proposition 1.1

Let F' and G be two antiderivatives of a function f on an interval I , then
there is a constant ¢ € R such that

Fz)=G(z)+c¢ Vexel
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Antiderivative and indefinite integral

Definition 1.2

Let F' be an anti-derivative of a function f on an interval I , we denote
/f(x)da: any antiderivative i.e.

/f(a:)d:c:F(x)—}-c;; Veel (1)

/f(:c)dx is called the indefinite integral of f on I . In the equation (1),

@ the constant c is called the constant of integration,
@ x is called the variable of integration,

o f(x) is called the integrand.
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Basic rules of integrations

/ldx:x—i-C.

xn+1

/l‘ndl': + C, where n £ —1, n € Q.
n+1

/cosmdwzsinx—l—c

/sinxdx:—cosw—l-c

/secdex:tanx—i—C

/Csc2$dw:—cotw+0

/
/

secrtanz dr = secx + C

© 66 6 6 o0 o o

cscxcotxr dr = —cscx +C
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Basic rules of integrations

o [lr@)f )iz
o / sin(f

e/cos
o/sec
e/csc
e/sec
e/csc

[f ()]
n—+1

= —cos(f(z))+C

+ C, wheren # -1, n € Q.

z)dz = sin(f(z)) + C
z)dz = tan(f(x)) + C
= —cot(f(x)) + C
)tan(f(x)) ' (x)dz = sec(f(x)) + C

)cot(f(z))f'(z)dz = —cse(f(z)) + C
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Example 1.2

1 1
° /COS(B:U +4)dz = 3 /cos(Sac +4)3dz = gsin(?)x +4)+C

(tanz)?

3 +C

° /tan2 zsec? xdx = /(tan:z:)%ec%dx =
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Proposition 1.2 (Some important formulas)

e If f is differntiable on an interval I , then

d
%f(z‘)das = f(z)+c

e If f has an antiderivative on an interval I , then

d
7 [ f@yie = @),

/ of ()dz = a / f(w)da.
/f(x) + g(x)dx = /f(m)daz—l—/g(m)dw.
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Summation Notation

A series can be represented in a compact form, called summation or
sigma notation.

The Greek capital letter, > , is used to represent the sum.
The series 4 + 8 + 12 + 16 + 20 + 24 can be expressed as

6
Z 4dn
n=1

The expression is read as the sum of 4n as n goes from 1 to 6.

The variable n is called the index of summation.
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Summation Notation

last value
formula for

of n
\ the terms

n=1
Index of first value
summation of n
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Summation Notation

Definition 2.1

n
Given a set of numbers {a1,az,...,a,}, the symbol > aj represents
k=1

their sum as follows

n
Zak:a1~l—a2+---~l—an
=1l

Theorem 2.1

For every ¢ € R (constant), and n € N, we have
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Summation Notation

Theorem 2.2

Let a, 8 € R, and n € N. For every ay,as,...,b1,b2, -, € R we have
> (aar+Bb) =ad ar+B8Y b
k=1 k=1 k=1
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Summation Notation

Theorem 2.3

For alln € N, we have

~ n(n+1)
ot

k=1
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Summation Notation

Example 2.1

4 4 4 4
kgl(k3—k+2) :k§1k3—]§1k+k§12
2
_ (@) _@ngég
=98
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Summation Notation

Example 2.2

M=

i(3k2—2k+1)=

3k? — Z 2k + Z 1
n(n+ 1)(2$+ 1) k_Q (n+1)
6

2
[(n+1)(2n+1) —2(n+1) + 2]

—_

[
Ts T

+n.l

(202 +3n+1—2n—2+2)

MI: wl: MI:

(2n? +n+1).
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Summation Notation

Using the formulas and properties from above determine the value of the

following summations.
100

Q > (3-2i)? 1293700
=1
ol
(i —1)2 1
O L e ;
1=
n
, Sl 5
@ lm ) 2 2
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Riemann Sums and Area

The approach of the integral of function by areas gives the geometrical
sense of integration. The second approach consists in introducing a priori
the antiderivative of function. The idea of the first approach is to cut the
interval [a;b] by a subdivision in sub-intervals [a;; aj41], then to add the
areas of rectangles based on the intervals [a;; a;1].
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Riemann Sums and Area

In this section we assume that the function f(z) > 0 on the interval [a, b].

Definition 2.2

The set {a = xg, 21, ...,2, = b} is called a regular partition of the
interval [a, b]

if x; = g +iAx for every i = 1,2,...,n, and Az = b_T“

This regular partition divides the interval [a,b] into n subintervals of the
form [z;_1,x;] where i =1,2,... n.
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Riemann Sums and Area

Area under the graph of a function :

If f(z) > 0 on the interval [a,b] and {z¢o = a,z1,...,x, = b} is a regular
partition of [a, b], then the area under the graph of f(z) can be
approximated by n rectangles using the formula:

A, = Zf(:vi)A:v
k=1
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Riemann Sums and Area

Example 2.3

Approximate the area under the graph of f(z) = 2z — 222 on the interval
[0, 1] using 10 rectangles .

fx)y=2x-2x2
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Riemann Sums and Area

QAx——OO 0.1

Q x():Ox =0.1,20=0.2,...,20 =09, 210 =1
10

Q A= 2 flz) Az =Y (2z; — 222)0.1

=1
Q A= 0 1[0 1840.32+0.424+0.48+0.54+0.48+0.424+0.32+0.184+-0]

@ Ay =0.1(3.3) = 0.33
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Riemann Sums and Area

Definition 2.3

Let {x9 = a,x1,...,x, = b} be a regular partition of the interval |a, b|
with Az = b_Ta. Pick points ¢, co, . .., c, where ¢; is any point in the
subintrval [x;—1,2z;],i=1,2,...,n.

The Riemann sum is:

n

Ry=) fla)Ax

=il

The area under the curve of f(x) is the limit of the Riemann sum.

A= lim R, = lim Zf(CZ)AZU
=1l

n—oo n—0o0 4
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Riemann Sums and Area

Example 2.4

Find the area under the curve of the function f(x) = 3z + 1 on the interval
[1, 3] using Riemann sum and ¢; is the middle point of the subinterval.

Solution
_b—a _ 2
Q Arx="30=2

(2] xgzl,xi:xo%—iﬁle—{—%foreveryi:1,2,...,n

@ Foreveryi=1,2,...,n,¢ € [ri_1,7],¢ = % =1+ %
n n .
@ R.=3 fle)Ao=2[B0+270) + 17 =8+ prlfl) 8.
@ The desired area Ais: A= lim R, = lim 8 + GM —6—-14
n—o00 n—00 n n
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Riemann Sums and Area

Do the last example where c; is the end point of the subinterval.
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The definite Integral

Definition 3.1

For any continuous function f defined on the interval [a,b] the definite
integral of f from a to b is:

whenever the limit exists.
(where c; is any point in the subintrval [x;—1,2;],i=1,2,...,n ).

Remark 3.1

@ Rieman Sum is the same for any choice of the points ¢, co, . .

‘7CTL

@ When the limit exists we say that the function f is integrable.
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The definite Integral

Remark 3.2

If the function f is continuous on [a,b] and f(z) > 0 for every = € [a, b] ,

then

b
(1) /f(x)da: >0

b
Q /f(x)dx = The area under the curve of f

Example 3.1
3

/(3z + 1)dz = Area under the curve of f = lim R, = 14.
n— 00
1
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The definite Integral

Estimate the area of the region between the function and the x-axis on the
given interval using n = 6 and using, the midpoints of the subintervals for

the height of the rectangles.

Q@ f(z)=x22—-222+40n]1,4] A = 33.40625
Q@ g(x)=4—+V22+2o0n[-1,3] A = 8.031494
Q h(zr)=—xcos (g) on [0, 3] A = —3.449532

Observation

In the last exercise, do not get excited about the negative area here. As
we discussed in this section this just means that the graph, in this case, is
below the z-axis.
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The definite Integral

Theorem 3.1

If the function f is continuous on the interval [a,b] then f is integrable on
[a,b] .
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The definite Integral

Properties of the definite integral

(P1) If cis a real number, then

b

/cda: = c(b— a)

a

(P,) If kis a real number and f : [a;b] — R is an integrable function,
then kf is integrable on [a;b] and
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The definite Integral

Properties of the definite integral

(Ps) If f and g are two integrable functions on [a;b], then f + g is
integrable on [a; b] and

/b[f(x) +g(z)ldz = /l)f(w)dﬂ?+/bg(fv)dﬂf

(Py) If f and g are two integrable functions on [a;b], then f — g is
integrable on [a; b] and

/b[f(x) —g(z)ldz = /bf(ﬂf)dw - /bg(fﬂ)dw
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The definite Integral

Properties of the definite integral

(P5) If a<c<bandif fis an integrable function on [a;b], then f is
integrable on [a; c] and on [¢; b], moreover

/bf(a:)dxzjf(:v)dx—i-/bf(ac)dx

(Ps) If fis integrable on [a;b] and Vz € [a,b], f(z) > 0 then

b

/ f(z)dz >0

a
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The definite Integral

Properties of the definite integral

(P;) If f and g are integrable on [a;b] and Vx € [a,b], f(x) > g(x) then

b

/f(x)dmZ/bg(x)dx

a

(Ps) If f is integrable on [a;b] then
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The definite Integral

Example 4.1

2 7
o 7/3(:[:2 —3)dz = 3/(352 — 3)dz = —32/(:[;2 —3)dz = —290
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The fundamental Theorem of Calculus

Theorem 5.1 (The fundamental Theorem of Calculus (Part 1))

If f is a continuous function on the interval [a,b], and G(z) is the
antiderivative of f(x) on [a,b] then:

Remark 5.1
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The fundamental Theorem of Calculus

Example 5.1

. 2
) O/(x2—2x)da:: {%3—3[;2]0: <§_4>_<g_o> :_g

@ Find the area under the graph of f(z) =sinz, on [0, 7].
The area:

A= /sinx dr = [—cosz]; = (—cosm) — (—cos0) =2
0
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The fundamental Theorem of Calculus

Theorem 5.2 (The fundamental Theorem of Calculus (Part I1))

If f is a continuous function on the interval [a,b] and G(x / f(t)dt for
every © € [a,b] then G'(x) = f(x) for every z € [a,b].
Example 5.2
0 L[ VErid-VoTl
0

T

1 1
d
4 dt =
S 2 +1
1
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The fundamental Theorem of Calculus

Theorem 5.3

If f is a continuous function , g and h are deifferentiable functions then

h(zx)

% / F(t) dt = F(h(@)H (x) - f(g(x))g/(x)
9(z)
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The fundamental Theorem of Calculus

Example 5.3
LL‘2

. . 1
Find G'(2), if G(z) = / mdt
=4
Solution
LEZ
Gl(z) =4 / ! dt =
d | 4+ 312
=4w
1 1

= 1532 ) " rrsa—ap Y

2z 1

G'@) = T3z T T30 =0
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The fundamental Theorem of Calculus

Remark 5.2
b

@ If g(z) = a and h(z) = b then d%/f(t) dt = £(b)(0) — f(a)(0) =0

elfg ) = a and h(x) = x then
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The fundamental Theorem of Calculus

Example 5.4
$2

Find F'(2), if F(z) =/%dt.

1
Solution
mz
1 2z 2
Fl(2)=94 [ Zdt 0= [ =(22) — == =-=1
( ) dz/t | = ( 2( ‘T) O)z:2 ($2)z=2 2
1
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The fundamental Theorem of Calculus

Example 5.5

$2
Find the derivative of F(x) = / In(t) dt.
2

h(x)

o’ / F(8) dt = f(h(@)l (x) - f(g(x))d ()
g(x)

2

F'(z) = % /; In(t) dt = In(h(z))h'(x) — 0

where h(z) = 22, so, we find F’(z) = In(2?)2z = 2z In(2?)
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The fundamental Theorem of Calculus

Example 5.6

5
Find the derivative of F(x) = / t3 dt.
cos(x)

h(x)

%/f(t) dt = f(h(x))h'(x) — f(g(2))g' ()
9(z)

5
F(r) = 2 [ #a=0-fg@)@

B % os(z)

Where g(x) = cosz, so we find: F’(z) = — cos® 2 (— sinx) = cos® wsin .
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Average value of a function

Theorem 5.4 (Mean Value Theorem for the definite integrals)

If  is continuous on [a;b], then there is a number ¢ € |a;b] such that

b

/ f(@)dz = (b— a)f(c)

a

Example 5.7

Find the value that satisfies the integral Mean value theorem for the
function f(x) = 423 — 1 on the interval [1, 2]
2

/(4;]53 —1) '

f(c):12—1:403—1:[x4—x]%:4c3—1:14$c: X T

Note that {/12 € [1,2]
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Average value of a function

Definition 5.1

Let f be a continuous on [a;b]. Then the average value f,v of f is given

by
b

fav = ﬁ/f(.%‘)dl‘

a

Example 5.8

Let f(z) = 3z 4 7 on the interval [0;1]. We know that
1

2 1

1

/(3$ + 7)dx = [3% 4 7.CC:| = g 7= ?7 Then the point ¢ where f
0

: . 17
assumed its average value verify 3c+ 7 = Ok then ¢ = %
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Average value of a function

Find fu. of the following function: f(x) = 2% — 2z on the interval [1,4]

4 4

3
/(:1:2 —2z)dr = [x_ —x2] =6
1 k !
4
/ —2x)d
i

Hence f,, = = g =2
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Average value of a function

@ Find f., of the function f(z) = (2x + 1)? on the interval [0, 1]

@ Find fu, of the function f(x) = sin®z cosx on the interval [0, 5]
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The fundamental Theorem of Calculus

© A function f : [—a;a] — R is odd if f(—x) = —f(x) for all
z € [—a;al.
@ A function f : [—a;a] — R is even if f(—z) = f(x) for all
z € [—a;al.
@ A function f : R — R is T-periodic if f(x +T) = f(x) for all z € R.
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The fundamental Theorem of Calculus

Theorem 5.5
Q@ If f is an odd function on [—a;a], then

a

/f(x)d:v =0

—a

@ If f is an even function on [—a;a], then

/af(:n)dm=2/af(:v)dm
~a 0

© If f is T-periodic, then, for all a € R

a+T

/ F(z)dz = /T F(z)dz
0

a
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