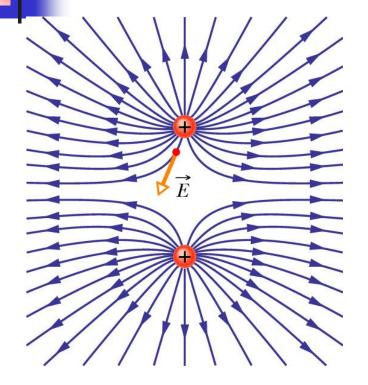
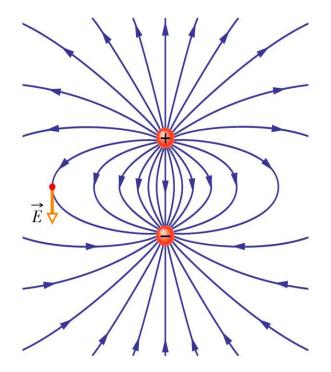
ELECTRICITY AND MAGNETISM- PHYS 104

BY DR. HADI ALQAHTANI OFFICE 2B2 PHYSICS AND ASTRONOMY COLLEGE OF SCIENCE, BUILDING NO. 4


Electric Force and Electric Field

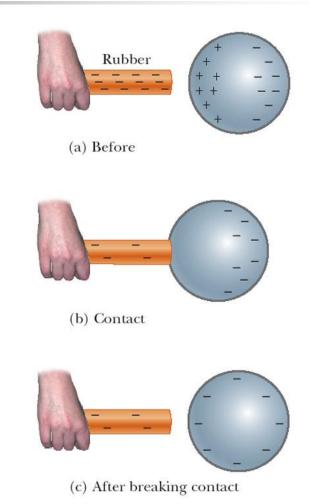

- Properties of Electric Charges
- Charging Objects by Conduction and Induction
- Electric Force (Coulomb's Law)
- Electric Field
- Electric Field Lines
- Motion of Charged Particle in a Uniform Electric Field

Properties of Electric Charges

- Two types of charges exist
 - They are called positive and negative
 - Named by Benjamin Franklin
- Like charges repel and unlike charges attract one another
- Nature's basic carrier of positive charge is the proton
 - Protons do not move from one material to another because they are held firmly in the nucleus

Charge Interactions

This is called an electric dipole


Properties of Charge, final

Charge is quantized

- All charge is a multiple of a fundamental unit of charge, symbolized by e
- Electrons have a charge of -e
- Protons have a charge of +e
- The SI unit of charge is the Coulomb (C)
 e = 1.6 x 10⁻¹⁹ C

Charging by Conduction

- A charged object (the rod) is placed in contact with another object (the sphere)
- Some electrons on the rod can move to the sphere
- When the rod is removed, the sphere is left with a charge
- The object being charged is always left with a charge having the same sign as the object doing the charging

© 2006 Brooks/Cole - Thomson

Charging by Induction

- When an object is connected to a conducting wire or pipe buried in the earth, it is said to be grounded
- A negatively charged rubber rod is brought near an uncharged sphere

Coulomb's Law

- Coulomb shows that an electrical force has the following properties:
 - It is along the line joining the two particles and inversely proportional to the square of the separation distance, r, between them
 - It is proportional to the product of the magnitudes of the charges, |q₁|and |q₂|on the two particles
 - It is attractive if the charges are of opposite signs and repulsive if the charges have the same signs

Coulomb's Law, cont.

• Mathematically,
$$F = k_e \frac{|q_1| |q_2|}{r^2}$$

k_e is called the Coulomb Constant

• $k_e = 8.9875 \times 10^9 \text{ N m}^2/\text{C}^2$

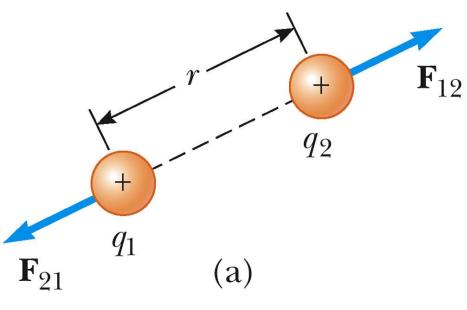
- Typical charges can be in the µC range
 - Remember, Coulombs must be used in the equation
- Remember that force is a vector quantity
- Applies only to point charges

Characteristics of Particles

TABLE 15.1

 Charge and Mass of the Electron, Proton, and Neutron

 Particle
 Charge (C)
 Mass (kg)


 Electron
 -1.60×10^{-19} 9.11×10^{-31}

 Proton
 $+1.60 \times 10^{-19}$ 1.67×10^{-27}

 Neutron
 0
 1.67×10^{-27}

Vector Nature of Electric Forces

- Two point charges are separated by a distance r
- The like charges produce a repulsive force between them
- The force on q₁ is equal in magnitude and opposite in direction to the force on q₂

© 2006 Brooks/Cole - Thomson

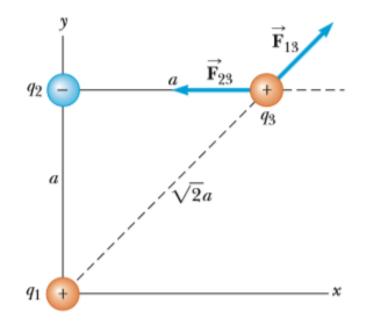
Example

• 23.1 The electron and proton of a hydrogen atom are separated (on the average) by a distance of approximately 0.053 nm. Find the magnitudes of the electric force and the gravitational force between the two particles.

$$F_e = k_e \frac{|e||-e|}{r^2} = (8.99 \times 10^9 \,\mathrm{N \cdot m^2/C^2}) \frac{(1.60 \times 10^{-19} \,\mathrm{C})^2}{(5.3 \times 10^{-11} \,\mathrm{m})^2}$$
$$= 8.2 \times 10^{-8} \,\mathrm{N}$$

$$F_g = G \frac{m_e m_p}{r^2}$$

= $(6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2}) \frac{(9.11 \times 10^{-31} \,\mathrm{kg})(1.67 \times 10^{-27} \,\mathrm{kg})}{(5.3 \times 10^{-11} \,\mathrm{m})^2}$
= $3.6 \times 10^{-47} \,\mathrm{N}$


Fe/Fg≈10³⁹ this means that gravitational force is negligible when dealing with charges atomic particles

Example 23.2

EXAMPLE 23.2 Find the Resultant Force

Consider three point charges located at the corners of a right triangle as shown in Figure 23.7, where $q_1 = q_3 = 5.0 \ \mu\text{C}$, $q_2 = -2.0 \ \mu\text{C}$, and $a = 0.10 \ \text{m}$. Find the resultant force exerted on q_3 .

Solution- schematic

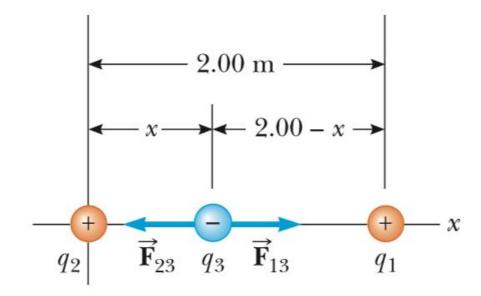
$$F_{23} = k_e \frac{|q_2| |q_3|}{a^2}$$

= $(8.99 \times 10^9 \,\mathrm{N \cdot m^2/C^2}) \frac{(2.0 \times 10^{-6} \,\mathrm{C}) (5.0 \times 10^{-6} \,\mathrm{C})}{(0.10 \,\mathrm{m})^2} = 9.0 \,\mathrm{N}$
 $F_{13} = k_e \frac{|q_1| |q_3|}{(\sqrt{2}a)^2}$
= $(8.99 \times 10^9 \,\mathrm{N \cdot m^2/C^2}) \frac{(5.0 \times 10^{-6} \,\mathrm{C}) (5.0 \times 10^{-6} \,\mathrm{C})}{2(0.10 \,\mathrm{m})^2} = 11 \,\mathrm{N}$

$$F_{13x} = F_{13} \cos 45^{\circ} = 7.9 \text{ N}$$

$$F_{13y} = F_{13} \sin 45^{\circ} = 7.9 \text{ N}$$

$$F_{3x} = F_{13x} + F_{23x} = 7.9 \text{ N} + (-9.0 \text{ N}) = -1.1 \text{ N}$$


$$F_{3y} = F_{13y} + F_{23y} = 7.9 \text{ N} + 0 = 7.9 \text{ N}$$

$$\vec{\mathbf{F}}_{3} = (-1.1\hat{\mathbf{i}} + 7.9\hat{\mathbf{j}}) \text{ N}$$

Example 23.3

EXAMPLE 23.3 Where Is the Net Force Zero?

Three point charges lie along the x axis as shown in Figure 23.8. The positive charge $q_1 = 15.0 \ \mu\text{C}$ is at $x = 2.00 \ \text{m}$, the positive charge $q_2 = 6.00 \ \mu\text{C}$ is at the origin, and the net force acting on q_3 is zero. What is the x coordinate of q_3 ?

$$\vec{\mathbf{F}}_{3} = \vec{\mathbf{F}}_{23} + \vec{\mathbf{F}}_{13} = -k_{e} \frac{|q_{2}||q_{3}|}{x^{2}} \hat{\mathbf{i}} + k_{e} \frac{|q_{1}||q_{3}|}{(2.00 - x)^{2}} \hat{\mathbf{i}} = 0$$

$$k_{e} \frac{|q_{2}||q_{3}|}{x^{2}} = k_{e} \frac{|q_{1}||q_{3}|}{(2.00 - x)^{2}}$$

$$(2.00 - x)^{2}|q_{2}| = x^{2}|q_{1}|$$

$$(4.00 - 4.00x + x^{2})(6.00 \times 10^{-6} \text{ C}) = x^{2}(15.0 \times 10^{-6} \text{ C})$$

 $3.00x^2 + 8.00x - 8.00 = 0$

x = 0.775 m