The determinants

Mongi BLEL

King Saud University

July 4, 2019

Table of contents

- 1 Definition of The Determinant
- Properties of the determinants
- The adjoint matrix

Definition of The Determinant

Definition

If $A = (a_{j,k})$ is a square matrix of type n. Denote $A_{j,k}$ the square matrix of type n-1 obtained by deleting the j^{th} -row and the k^{th} - column of A.

Example: If
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 2 & -4 \\ 2 & -3 & 4 \end{pmatrix}$$
, then $A_{2,3} = \begin{pmatrix} 1 & 2 \\ 2 & -3 \end{pmatrix}$.

Definition

• If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, the determinant of A is defined by:

$$|A| = \det(A) = \left| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right| = ad - bc.$$

If $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$, the determinant of A is defined by:

$$|A| = \det(A) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}.$$

Definition

If

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ & & \vdots & \\ a_{n,1} & a_{m,2} & \dots & a_{n,n} \end{pmatrix},$$

the determinant of A is defined by:

$$|A| = \det(A) = a_{1,1} \det A_{1,1} + \dots + (-1)^{n+1} a_{1,n} \det A_{1,n}$$

= $\sum_{j=1}^{n} (-1)^{j+1} a_{1,j} \det A_{1,j}$.

• If
$$A = \begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix}$$
, the determinant of A is

$$|A| = \det(A) = \begin{vmatrix} 4 & 5 \\ 2 & 3 \end{vmatrix} = 4.3 - 5.2 = 2.$$

If
$$A = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 0 & 2 & 4 \end{pmatrix}$$
, the determinant of the matrix A is

$$|A| = det(A) = \begin{vmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 0 & 2 & 4 \end{vmatrix} = 1 \begin{vmatrix} 4 & 6 \\ 2 & 4 \end{vmatrix} - 3 \begin{vmatrix} 2 & 6 \\ 0 & 4 \end{vmatrix} + 5 \begin{vmatrix} 2 & 4 \\ 0 & 2 \end{vmatrix}$$

$$|A| = \det(A) = \begin{vmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 0 & 2 & 4 \end{vmatrix} = 1 \begin{vmatrix} 4 & 6 \\ 2 & 4 \end{vmatrix} - 3 \begin{vmatrix} 2 & 6 \\ 0 & 4 \end{vmatrix} + 5 \begin{vmatrix} 2 & 4 \\ 0 & 2 \end{vmatrix} = 0.$$

Definition

If A is a square matrix of order n, the determinant $\det A_{j,k}$ is called the minor of the entry $a_{j,k}$ or the $(j,k)^{\text{th}}$ minor of A and the number $C_{j,k}=(-1)^{j+k} \det A_{j,k}$ is called the cofactor of the entry $a_{j,k}$ or the $(j,k)^{\text{th}}$ cofactor of the matrix A.

Remark

• If A is a square matrix of order n, the determinant of the matrix A is equal to

$$\det A = \sum_{j=1}^n a_{1,j} C_{1,j}.$$

2 By rearranging the boundaries we conclude to

$$\det A = \sum_{j=1}^{n} a_{1,j} C_{1,j} = \sum_{j=1}^{n} a_{k,j} C_{k,j}$$
$$= \sum_{k=1}^{n} a_{k,j} C_{k,j}.$$

The Sarrus's Theorem

If n = 3 and the matrix

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}$$

$$\begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix} \begin{array}{c} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} & a_{3,3} \\ a_{3,1} & a_{3,2} \end{array}$$

$$\det A = a_{1,1}(a_{2,2} \cdot a_{3,3} - a_{2,3} \cdot a_{3,2}) \\ -a_{1,2}(a_{2,1} \cdot a_{3,3} - a_{2,3} \cdot a_{3,1}) \\ +a_{1,3}(a_{2,1} \cdot a_{3,2} - a_{2,2} \cdot a_{3,1})$$

If
$$A = \begin{pmatrix} 3 & -4 & 0 \\ 0 & 7 & 6 \\ 2 & -6 & 1 \end{pmatrix}$$
,

$$\det A = \begin{vmatrix} 3 & -4 & 0 & 3 & -4 \\ 0 & 7 & 6 & 0 & 7 \\ 2 & -6 & 1 & 2 & -6 \end{vmatrix}$$

$$= 3 \cdot 7 \cdot 1 + (-4) \cdot 6 \cdot 2 - (-6) \cdot 6 \cdot 3 = 81.$$

Properties of the Determinants

Theorem

- If A is a square matrix, $\det A^T = \det A$.
- ② If a square matrix A contains a zero row or column, then its determinant is 0.
- **3** If the matrix $A = (a_{j,k})_{1 \le j,k \le n}$ is upper (lower) triangular, then its determinant is equal to:

$$a_{1,1} \ldots a_{n,n}$$
.

• If a square matrix A contains a row which is a multiple of a different row, then its determinant is 0.

Theorem

- If a matrix B is obtained by multiplying a row of a matrix A by a number c, then |B| = c|A| (i.e. $|c.R_iA| = c|A|$).
- If a matrix B is obtained by interchanging two rows of a matrix A, then $\det B = -\det A$ (i.e. $|R_{i,k}A| = -|A|$).
- If a matrix B is obtained by adding a multiple of a row to another row of a matrix A, then $\det B = \det A$. (i.e. $|cR_{i,k}A| = |A|$).

$$\begin{vmatrix} 1 & 3 & 2 & 2 \\ 2 & 3 & 3 & 1 \\ 3 & 3 & 4 & 2 \\ 1 & 1 & 1 & 1 \end{vmatrix} \xrightarrow{(-2)R_{1,2},(-3)R_{1,3}} \begin{vmatrix} 1 & 3 & 2 & 1 \\ 0 & -3 & -1 & -1 \\ 0 & -6 & -2 & -1 \\ 0 & -2 & -1 & 0 \end{vmatrix}$$

$$= -\begin{vmatrix} 3 & 1 & 1 \\ 6 & 2 & 1 \\ 2 & 1 & 0 \end{vmatrix}$$

$$= -\begin{vmatrix} 3 & 1 & 1 \\ 3 & 1 & 0 \\ 2 & 1 & 0 \end{vmatrix}$$

$$= -\begin{vmatrix} 3 & 1 & 1 \\ 3 & 1 & 0 \\ 2 & 1 & 0 \end{vmatrix}$$

$$= -\begin{vmatrix} 3 & 1 & 1 \\ 2 & 1 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -2 & 5 & -2 & -1 \\ -2 & 3 & -1 & 1 & 0 \\ 3 & -3 & 2 & 0 & -1 \\ 1 & -1 & 2 & 1 & -4 \\ 1 & -2 & 4 & -3 & 1 \end{vmatrix} \xrightarrow{2R_{1,2} - 3R_{1,3}} \begin{pmatrix} 1 & -2 & 5 & -2 & -1 \\ 0 & -1 & 9 & -3 & -2 \\ 0 & 3 & -13 & 6 & 2 \\ 0 & 1 & -3 & 3 & -3 \\ 0 & 0 & -1 & -1 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} -1 & 9 & -3 & -2 \\ 3 & -13 & 6 & 2 \\ 1 & -3 & 3 & -3 \\ 0 & -1 & -1 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 3R_{1,2}, 1R_{1,3} \\ = \end{vmatrix} \begin{vmatrix} -1 & 9 & -3 & -2 \\ 0 & 14 & -3 & -4 \\ 0 & 6 & 0 & -5 \\ 0 & -1 & -1 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 14 & -3 & -4 \\ 6 & 0 & -5 \\ 1 & 1 & -2 \end{vmatrix}$$

$$= \begin{vmatrix} 14 & 6 & 1 \\ -3 & 0 & 1 \\ -4 & -5 & -2 \end{vmatrix}$$

$$= \begin{vmatrix} -17 & -6 & 0 \\ 24 & 7 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} -17 & -6 \\ 24 & 7 \end{vmatrix}$$

$$= \begin{vmatrix} 1R_{1,2} \\ -17 & -6 \\ 7 & 1 \end{vmatrix}$$

$$= 42 - 17 = 25.$$

Mongi BLEL

The determinants

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 2 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & -2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & -3 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 1 \\ 0 & -3 \end{vmatrix} = -3.$$

$$\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = \begin{vmatrix} 1 & a & a^{2} \\ 0 & b - a & (b - a)(b + a) \\ 0 & c - a & (c - a)(c + a) \end{vmatrix}$$
$$= (b - a)(c - a)\begin{vmatrix} 1 & b + a \\ 1 & c + a \end{vmatrix}$$
$$= (b - a)(c - a)(c - b).$$

Theorem

If A and B are in $M_n(\mathbb{R})$, then

$$\det(AB) = \det A \det B.$$

Theorem

A square matrix A is invertible if and only if $\det A \neq 0$.

Remarks

- **1** If A is a square matrix of order n, then $|cA| = c^n |A|$.
- 2 Let A be a square matrix and B a row echelon form of A. Then there is a finite elementary matrices E_1, \ldots, E_m such that $E_1 \ldots E_m A = B$. Moreover

$$\det(E_1) \dots \det(E_m) \det(A) = \det(B).$$

The adjoint matrix

Definition

Let A be a square matrix. The adjoint matrix associated to the matrix A is $\operatorname{adj}(A) = (C_{j,k})^T$, where $(C_{j,k})$ is the cofactor matrix of A.

Theorem

Let A be a square matrix of order n, then

$$(\operatorname{adj}(A))A = A(\operatorname{adj}(A)) = (\operatorname{det} A)I_n.$$

Theorem

If A is an invertible matrix, then

$$A^{-1} = \frac{1}{\det A} \operatorname{adj}(A).$$

$$\det A^{-1} = \frac{1}{\det A}.$$

•
$$n = 2$$
, $A = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$, $\det A = 5$, $\operatorname{adj}(A) = \begin{pmatrix} 1 & 1 \\ -3 & 2 \end{pmatrix}$ and $A^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 1 \\ -3 & 2 \end{pmatrix}$.

$$adj(A) = \begin{pmatrix} 2 & 1 & 0 \\ 1 & -2 & 3 \\ -1 & 0 & 2 \end{pmatrix}, det A = -13$$

$$adj(A) = \begin{pmatrix} -4 & -5 & -2 \\ -2 & 4 & -1 \\ 3 & -6 & -5 \end{pmatrix}^{T} = \begin{pmatrix} -4 & -2 & 3 \\ -5 & 4 & -6 \\ -2 & -1 & -5 \end{pmatrix}$$
and $A^{-1} = \frac{1}{13} \begin{pmatrix} 4 & 2 & -3 \\ 5 & -4 & 6 \\ 2 & 1 & 5 \end{pmatrix}$.

$$adj(A) = \begin{cases} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{cases}, det A = -24$$

$$adj(A) = \begin{cases} -20 & -4 & -4 & -4 \\ -4 & -20 & -4 & -4 \\ -4 & -4 & -20 & -4 \\ -4 & -4 & -4 & -20 \end{cases},$$

$$and A^{-1} = \frac{1}{6} \begin{pmatrix} 5 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 \\ 1 & 1 & 5 & 1 \\ 1 & 1 & 1 & 5 \end{pmatrix}$$

Exercises

Let
$$A$$
 be the following matrix $A = \begin{pmatrix} 1 & -4 & 3 \\ 0 & 2 & -1 \\ 1 & -2 & 3 \end{pmatrix}$.

- Find the matrix adj(A) and the determinant of the matrix A.
- 2 Find the inverse of the matrix A if it exists.

Let A,B be matrices of size (3,3) such that A is not invertible and |B|=2. Find $|A\operatorname{adj}(A)+2B^{-1}|$. $|A\operatorname{adj}(A)+2B^{-1}|=\frac{8}{|B|}=4$.

Exercises

Let A and B be the following matrices:

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 2 & -1 & 0 \end{pmatrix} B = \begin{pmatrix} 3 & -1 & -1 \\ 2 & 0 & -1 \\ -2 & 1 & 4 \end{pmatrix}$$

Find the number a such that $A^2 - AB + aI_3 = 0$ and find the inverse matrix of A.

If
$$adj(A) = \begin{pmatrix} 3 & 1 & 2 \\ 0 & 3 & 2 \\ -1 & 2 & 1 \end{pmatrix}$$
, find the matrix A .

We have $A \operatorname{adj}(A) = I_3$, then $A = |A|(\operatorname{adj}(A))^{-1}$ and $|A| |\operatorname{adj}(A)| = |A|^3$, then $|\operatorname{adj}(A)| = |A|^2$. Therefore $A = \sqrt{|\operatorname{adj}(A)|}(\operatorname{adj}(A))^{-1}$.

$$|adj(A)| = 1$$
, the $|A| = 1$ and $A = \begin{pmatrix} -1 & 3 & -4 \\ -2 & 5 & -6 \\ 3 & -7 & 9 \end{pmatrix}$

Exercises

① Prove that if a matrix $A \in M_n(\mathbb{R})$, $n \ge 2$ has an inverse, then

$$\operatorname{adj}(\operatorname{adj}(A)) = (\det A)^{n-2}A.$$

② Prove that a matrix A has an inverse if and only if the matrix adj(A) has an inverse.

Solution

- 1 From the relation $A\operatorname{adj}(A) = |A|I_n$ we conclude that $|\operatorname{adj}(A)| = |A|^{n-1}$ and $(\operatorname{adj}(A))^{-1} = \frac{1}{|A|}A$ if $|A| \neq 0$. If the matrix A has an inverse, then $A^{-1} = \frac{1}{|A|}\operatorname{adj}(A)$. Let $B = \operatorname{adj}(A)$, then $B\operatorname{adj}(B) = |B|I_n = |A|^{n-1}I_n$ and $\operatorname{adj}(B) = |A|^{n-1}B^{-1} = |A|^{n-2}A$. $\operatorname{adj}(\operatorname{adj}(A) = (\det A)^{n-2}A$.
- From the relation Aadj(A) = |A|I_n we conclude that if the matrix A has an inverse then the matrix adj(A) has an inverse. Also from the same relation, if the matrix adj(A) has an inverse and the matrix A do not has an inverse, then Aadj(A) = 0 and Aadj(A)(adj(A))⁻¹ = 0.
 Then A = 0 this is absurd, because if A = 0 then adj(A) = 0.