Chapter 24: Gauss's Law

Electric Flux

Electric Flux

- Electric flux is the product of the magnitude of the electric field and the surface area, A, perpendicular to the field
- $\Phi_{E}=E A$

Electric Flux, General Area

- The field lines may make some angle θ with the perpendicular to the surface
- Then $\Phi_{E}=E A \cos \theta$

Electric Flux, Interpreting the Equation

- The flux is a maximum when the surface is perpendicular to the field
- The flux is zero when the surface is parallel to the field
- If the field varies over the surface, $\Phi=$ $E A \cos \theta$ is valid for only a small element of the area

Example

ExAMPLE 24.1 Flux Through a Sphere

What is the electric flux through a sphere that has a radius of 1.00 m and carries a charge of $+1.00 \mu \mathrm{C}$ at its center?

Solution The magnitude of the electric field 1.00 m from this charge is given by Equation 23.4,

$$
\begin{aligned}
E & =k_{e} \frac{q}{r^{2}}=\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \frac{1.00 \times 10^{-6} \mathrm{C}}{(1.00 \mathrm{~m})^{2}} \\
& =8.99 \times 10^{3} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

Example

$$
\begin{aligned}
\Phi_{E} & =E A=\left(8.99 \times 10^{3} \mathrm{~N} / \mathrm{C}\right)\left(12.6 \mathrm{~m}^{2}\right) \\
& =1.13 \times 10^{5} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}
\end{aligned}
$$

Exercise What would be the (a) electric field and (b) flux through the sphere if it had a radius of 0.500 m ?

Answer (a) $3.60 \times 10^{4} \mathrm{~N} / \mathrm{C}$; (b) $1.13 \times 10^{5} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$.

Electric Flux, General

- In the more general case, look at a small area element
$\Delta \Phi_{E}=E_{i} \Delta A_{i} \cos \theta_{i}=\mathbf{E}_{i} \cdot \Delta \mathbf{A}_{i}$
- In general, this becomes

$$
\Phi_{E}=\lim _{\Delta A_{i} \rightarrow 0} \sum E_{i} \cdot \Delta A_{i}=\int_{\text {surface }} \mathbf{E} \cdot d \mathbf{A}
$$

Electric Flux, final

- The surface integral means the integral must be evaluated over the surface in question
- In general, the value of the flux will depend both on the field pattern and on the surface
- The units of electric flux will be $\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}^{2}$

Electric Flux, Closed Surface

- Assume a closed surface
- The vectors $\Delta \boldsymbol{A}_{j}$ point in different directions
- At each point, they are perpendicular to the surface
- By convention, they point outward

Flux Through Closed Surface, cont.

- At (1), the field lines are crossing the surface from the inside to the outside; $\theta<90^{\circ}, \Phi$ is positive
- At (2), the field lines graze surface; $\theta=90^{\circ}, \Phi=0$
- At (3), the field lines are crossing the surface from the outside to the inside; $180^{\circ}>\theta>90^{\circ}, \Phi$ is negative

Flux Through Closed Surface, final

- The net flux through the surface is proportional to the net number of lines leaving the surface
- This net number of lines is the number of lines leaving the surface minus the number entering the surface
- If E_{n} is the component of \mathbf{E} perpendicular to the surface, then

$$
\left.\Phi_{E}=\oint \mathfrak{E} \cdot d \mathbf{A}=\emptyset\right\rceil E_{n} d A
$$

Example 24.2

EXAMPLE 24.2 Flux Through a Cube

Consider a uniform electric field \mathbf{E} oriented in the x direction. Find the net electric flux through the surface of a cube of edges ℓ, oriented as shown in Figure 24.5.

Solution of Example 24.2

For (1), \mathbf{E} is constant and directed inward but $d \mathbf{A}_{1}$ is directed outward $\left(\theta=180^{\circ}\right)$; thus, the flux through this face is

$$
\int_{1} \mathbf{E} \cdot d \mathbf{A}=\int_{1} E\left(\cos 180^{\circ}\right) d A=-E \int_{1} d A=-E A=-E \ell^{2}
$$

because the area of each face is $A=\ell^{2}$.
For (2), \mathbf{E} is constant and outward and in the same direction as $d \mathbf{A}_{2}\left(\theta=0^{\circ}\right)$; hence, the flux through this face is

$$
\int_{2} \mathbf{E} \cdot d \mathbf{A}=\int_{2} E\left(\cos 0^{\circ}\right) d A=E \int_{2} d A=+E A=E \ell^{2}
$$

Therefore, the net flux over all six faces is

$$
\Phi_{E}=-E \ell^{2}+E \ell^{2}+0+0+0+0=0
$$

EXAMPLE 24.5

An insulating solid sphere of radius a has a uniform volume charge density ρ and carries a total positive charge Q (Fig. 24.11). (a) Calculate the magnitude of the electric field at a point outside the sphere.
(b) Find the magnitude of the electric field at a point inside the sphere.

(a) $\quad E=k_{e} \frac{Q}{r^{2}} \quad($ for $r>a)$
(b)

$$
\begin{gathered}
q_{\text {in }}=\rho V^{\prime}=\rho\left(\frac{4}{3} \pi r^{3}\right) \\
\oint E d A=E \oint d A=E\left(4 \pi r^{2}\right)=\frac{q_{\text {in }}}{\epsilon_{0}} \\
E=\frac{q_{\text {in }}}{4 \pi \epsilon_{0} r^{2}}=\frac{\rho_{3}^{4} \pi r^{3}}{4 \pi \epsilon_{0} r^{2}}=\frac{\rho}{3 \epsilon_{0}} r
\end{gathered}
$$

Because $\rho=Q / \frac{4}{3} \pi a^{3}$ by definition and since $k_{e}=1 /\left(4 \pi \epsilon_{0}\right)$, this expression for E can be written as

$$
E=\frac{Q r}{4 \pi \epsilon_{0} a^{3}}=\frac{k_{e} Q}{a^{3}} r \quad(\text { for } r<a)
$$

EXAMPLE 24.6

The Electric Field Due to a Thin Spherical Shell

A thin spherical shell of radius a has a total charge Q distributed uniformly over its surface (Fig. 24.13a). Find the electric field at points (a) outside and (b) inside the shell.

EXAMPLE 24.6

The Electric Field Due to a Thin Spherical Shell

(a) Outside the ring

$$
E=k_{e} \frac{Q}{r^{2}} \quad(\text { for } r>a)
$$

(b) $\mathrm{E}=0$ inside the ring

