Chapter 26

Capacitance and Dielectrics

Circuits and Circuit Elements

Electric circuits are the basis for the vast majority of the devices used in society.
Circuit elements can be connected with wires to form electric circuits.
Capacitors are one circuit element.

- Others will be introduced in other chapters

Capacitors

Capacitors are devices that store electric charge.
Examples of where capacitors are used include:

- radio receivers
- filters in power supplies
- to eliminate sparking in automobile ignition systems
- energy-storing devices in electronic flashes

Makeup of a Capacitor

A capacitor consists of two conductors.

- These conductors are called plates.
- When the conductor is charged, the plates carry charges of equal magnitude and opposite directions.
A potential difference exists between the plates due to the charge.

When the capacitor is charged, the conductors carry charges of equal magnitude and opposite sign.

Definition of Capacitance

The capacitance, C, of a capacitor is defined as the ratio of the magnitude of the charge on either conductor to the potential difference between the conductors.

$$
C \equiv \frac{Q}{\Delta V}
$$

The SI unit of capacitance is the farad (F).
The farad is a large unit, typically you will see microfarads (mF) and picofarads (pF).

Capacitance will always be a positive quantity
The capacitance of a given capacitor is constant.
The capacitance is a measure of the capacitor's ability to store charge .

- The capacitance of a capacitor is the amount of charge the capacitor can store per unit of potential difference.

Parallel Plate Capacitor

Each plate is connected to a terminal of the battery.

- The battery is a source of potential difference.

If the capacitor is initially uncharged, the battery establishes an electric field in the connecting wires.

When the capacitor is connected to the terminals of a battery, electrons transfer between the plates and the wires so that the plates become charged.

Parallel Plate Capacitor, cont

This field applies a force on electrons in the wire just outside of the plates.
The force causes the electrons to move onto the negative plate.
This continues until equilibrium is achieved.

- The plate, the wire and the terminal are all at the same potential.

At this point, there is no field present in the wire and the movement of the electrons ceases.

The plate is now negatively charged.
A similar process occurs at the other plate, electrons moving away from the plate and leaving it positively charged.

In its final configuration, the potential difference across the capacitor plates is the same as that between the terminals of the battery.

Problem 26.1

(a) How much charge is on each plate of a $4.00 \mu \mathrm{~F}$ capacitor when it is connected to a $12.0-\mathrm{V}$ battery? (b) If this same capacitor is connected to a $1.50-\mathrm{V}$ battery, what charge is stored?
(a) $Q=C \Delta V=\left(4.00 \times 10^{-6} \mathrm{~F}\right)(12.0 \mathrm{~V})=4.80 \times 10^{-5} \mathrm{C}=48.0 \mu \mathrm{C}$
(b) $Q=C \Delta V=\left(4.00 \times 10^{-6} \mathrm{~F}\right)(1.50 \mathrm{~V})=6.00 \times 10^{-6} \mathrm{C}=6.00 \mu \mathrm{C}$

Capacitance - Parallel Plates

The charge density on the plates is $\sigma=Q / A$.

- A is the area of each plate, the area of each plate is equal
- Q is the charge on each plate, equal with opposite signs

The electric field is uniform between the plates and zero elsewhere.
The capacitance is proportional to the area of its plates and inversely proportional to the distance between the plates.
$C=\frac{Q}{\Delta V}=\frac{Q}{E d}=\frac{Q}{Q d / \varepsilon_{0} A}=\frac{\varepsilon_{0} A}{d}$

Circuit Symbols

A circuit diagram is a simplified representation of an actual circuit.

Circuit symbols are used to represent the various elements.

Lines are used to represent wires.
The battery's positive terminal is indicated by the longer line.

Capacitor symbol

Battery symbol

Switch symbol

Open

Closed

Example 26.1 Parallel-Plate Capacitor

A parallel-plate capacitor with air between the plates has an area $\mathrm{A}=2.00 \times 10^{-4}$ m^{2} and a plate separation $\mathrm{d}=1.00 \mathrm{~mm}$. Find its capacitance.

$$
\begin{aligned}
C & =\frac{\epsilon_{0} A}{d}=\frac{\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(2.00 \times 10^{-4} \mathrm{~m}^{2}\right)}{1.00 \times 10^{-3} \mathrm{~m}} \\
& =1.77 \times 10^{-12} \mathrm{~F}=1.77 \mathrm{pF}
\end{aligned}
$$

Problem 26.7

An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm^{2}, separated by a distance of 1.80 mm . A 20.0-V potential difference is applied to these plates. Calculate (a) the electric field between the plates, (b) the surface charge density, (c) the capacitance, and (d) the charge on each plate.
(a) $\Delta V=E d$

$$
E=\frac{20.0 \mathrm{~V}}{1.80 \times 10^{-3} \mathrm{~m}}=11.1 \mathrm{kV} / \mathrm{m}
$$

(b) $\quad E=\frac{\sigma}{\epsilon_{0}}$

$$
\sigma=\left(1.11 \times 10^{4} \mathrm{~N} / \mathrm{C}\right)\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)=98.3 \mathrm{nC} / \mathrm{m}^{2}
$$

(c) $\quad C=\frac{\epsilon_{0} A}{d}=\frac{\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}\right)\left(7.60 \mathrm{~cm}^{2}\right)(1.00 \mathrm{~m} / 100 \mathrm{~cm})^{2}}{1.80 \times 10^{-3} \mathrm{~m}}=3.74 \mathrm{pF}$
(d) $\quad \Delta V=\frac{Q}{C}$

$$
Q=(20.0 \mathrm{~V})\left(3.74 \times 10^{-12} \mathrm{~F}\right)=74.7 \mathrm{pC}
$$

Problem 26.9

When a potential difference of 150 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of $30.0 \mathrm{nC} / \mathrm{cm}^{2}$. What is the spacing between the plates?

$$
\begin{aligned}
& Q=\frac{\in_{0} A}{d}(\Delta V) \quad \frac{Q}{A}=\sigma=\frac{\in_{0}(\Delta V)}{d} \\
& d=\frac{\in_{0}(\Delta V)}{\sigma}=\frac{\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)(150 \mathrm{~V})}{\left(30.0 \times 10^{-9} \mathrm{C} / \mathrm{cm}^{2}\right)\left(1.00 \times 10^{4} \mathrm{~cm}^{2} / \mathrm{m}^{2}\right)}=4.42 \mu \mathrm{~m}
\end{aligned}
$$

Capacitors in Parallel

When capacitors are first connected in the circuit, electrons are transferred from the left plates through the battery to the right plate, leaving the left plate positively charged and the right plate negatively charged.

A pictorial
representation of two
capacitors connected in
parallel to a battery

Capacitors in Parallel, 2

The flow of charges ceases when the voltage across the capacitors equals that of the battery.
The potential difference across the capacitors is the same.

- And each is equal to the voltage of the battery
- $\Delta \mathrm{V}_{1}=\Delta \mathrm{V}_{2}=\Delta \mathrm{V}$
- $\Delta \mathrm{V}$ is the battery terminal voltage

The capacitors reach their maximum charge when the flow of charge ceases.
The total charge is equal to the sum of the charges on the capacitors.

- $Q_{\text {tot }}=Q_{1}+Q_{2}$

Capacitors in Parallel, 3

The capacitors can be replaced with one capacitor with a capacitance of $C_{\text {eq }}$.

- The equivalent capacitor must have exactly the same external effect on the circuit as the original capacitors.

A circuit diagram showing the two capacitors connected in parallel to a battery

A circuit diagram
showing the equivalent
capacitance of the
capacitors in parallel

ΔV
b

C

Capacitors in Parallel, final

$C_{\text {eq }}=C_{1}+C_{2}+C_{3}+\ldots$
The equivalent capacitance of a parallel combination of capacitors is greater than any of the individual capacitors.

- Essentially, the areas are combined

Capacitors in Series

When a battery is connected to the circuit, electrons are transferred from the left plate of C_{1} to the right plate of C_{2} through the battery.

As this negative charge accumulates on the right plate of C_{2}, an equivalent amount of negative charge is removed from the left plate of C_{2}, leaving it with an excess positive charge.

All of the right plates gain charges of $-Q$ and all the left plates have charges of $+Q$.

A pictorial
representation of two
capacitors connected in
series to a battery

Capacitors in Series, cont.

An equivalent capacitor can be found that performs the same function as the series combination.

The charges are all the same.

$$
Q_{1}=Q_{2}=Q
$$

A circuit diagram showing the equivalent capacitance of the capacitors in series

Capacitors in Series, final

The potential differences add up to the battery voltage.

$$
\Delta \mathrm{V}_{\text {tot }}=\Delta \mathrm{V}_{1}+\Delta \mathrm{V}_{2}+\ldots
$$

The equivalent capacitance is

$$
\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots
$$

The equivalent capacitance of a series combination is always less than any individual capacitor in the combination.

Equivalent Capacitance, Example

The $1.0-\mu \mathrm{F}$ and $3.0-\mu \mathrm{F}$ capacitors are in parallel as are the $6.0-\mu \mathrm{F}$ and $2.0-\mu \mathrm{F}$ capacitors.
These parallel combinations are in series with the capacitors next to them.
The series combinations are in parallel and the final equivalent capacitance can be found.

Problem 26.18

Evaluate the equivalent capacitance of the configuration shown in the Figure. All the capacitors are identical, and each has capacitance C.

The circuit reduces first according to the rule for capacitors in series, as shown in the figure, then according to the rule for capacitors in parallel, shown below.

$C_{e q}=C\left(1+\frac{1}{2}+\frac{1}{3}\right)=\frac{11}{6} C=1.83 C$

Problem 26.21

Four capacitors are connected as shown in the Figure. (a) Find the equivalent capacitance between points a and b. (b) Calculate the charge on each capacitor if $\Delta V_{a b}=15.0 \mathrm{~V}$.
(a) $\frac{1}{C_{s}}=\frac{1}{15.0}+\frac{1}{3.00}$

$$
\begin{aligned}
& C_{s}=2.50 \mu \mathrm{~F} \\
& C_{p}=2.50+6.00=8.50 \mu \mathrm{~F} \\
& C_{e q}=\left(\frac{1}{8.50 \mu \mathrm{~F}}+\frac{1}{20.0 \mu \mathrm{~F}}\right)^{-1}=5.96 \mu \mathrm{~F}
\end{aligned}
$$

(b) $\quad Q=C \Delta V=(5.96 \mu \mathrm{~F})(15.0 \mathrm{~V})=89.5 \mu \mathrm{C}$ on $20.0 \mu \mathrm{~F}$

$$
\Delta V=\frac{Q}{C}=\frac{89.5 \mu \mathrm{C}}{20.0 \mu \mathrm{~F}}=4.47 \mathrm{~V}
$$

$$
15.0-4.47=10.53 \mathrm{~V}
$$

$$
Q=C \Delta V=(6.00 \mu \mathrm{~F})(10.53 \mathrm{~V})=63.2 \mu \mathrm{C} \text { on } 6.00 \mu \mathrm{~F}
$$

$$
89.5-63.2=26.3 \mu \mathrm{C} \text { on } 15.0 \mu \mathrm{~F} \text { and } 3.00 \mu \mathrm{~F}
$$

FIG. P26.21

Energy in a Capacitor - Overview

Consider the circuit to be a system.
Before the switch is closed, the energy is stored as chemical energy in the battery.
When the switch is closed, the energy is transformed from chemical potential energy to electric potential energy.
The electric potential energy is related to the separation of the positive and negative charges on the plates.
A capacitor can be described as a device that stores energy as well as charge.

Energy Stored in a Capacitor

Assume the capacitor is being charged and, at some point, has a charge q on it.

The work needed to transfer a charge from one plate to the other is
$d W=\Delta V d q=\frac{q}{C} d q$
The work required is the area of the tan rectangle.

The total work required is

$$
W=\int_{0}^{Q} \frac{q}{C} d q=\frac{Q^{2}}{2 C}
$$

The work required to move charge $d q$ through the potential difference ΔV across the capacitor plates is given approximately by the area of the shaded rectangle.

Energy, cont

The work done in charging the capacitor appears as electric potential energy U :

$$
U=\frac{Q^{2}}{2 C}=\frac{1}{2} Q \Delta V=\frac{1}{2} C(\Delta V)^{2}
$$

This applies to a capacitor of any geometry.
The energy stored increases as the charge increases and as the potential difference increases.

In practice, there is a maximum voltage before discharge occurs between the plates.

Energy, final

The energy can be considered to be stored in the electric field .
For a parallel-plate capacitor, the energy can be expressed in terms of the field as $U=1 / 2\left(\varepsilon_{0} A d\right) E^{2}$.
It can also be expressed in terms of the energy density (energy per unit volume)
$u_{E}=1 / 2 \varepsilon_{0} E^{2}$.

Some Uses of Capacitors

Defibrillators

- When cardiac fibrillation occurs, the heart produces a rapid, irregular pattern of beats
- A fast discharge of electrical energy through the heart can return the organ to its normal beat pattern.
In general, capacitors act as energy reservoirs that can be slowly charged and then discharged quickly to provide large amounts of energy in a short pulse.

Problem 26.31

(a) A $3.00-\mu \mathrm{F}$ capacitor is connected to a $12.0-\mathrm{V}$ battery. How much energy is stored in the capacitor? (b) If the capacitor had been connected to a $6.00-\mathrm{V}$ battery, how much energy would have been stored?
(a) $\quad U=\frac{1}{2} C(\Delta V)^{2}=\frac{1}{2}(3.00 \mu \mathrm{~F})(12.0 \mathrm{~V})^{2}=216 \mu \mathrm{~J}$
(b) $\quad U=\frac{1}{2} C(\Delta V)^{2}=\frac{1}{2}(3.00 \mu \mathrm{~F})(6.00 \mathrm{~V})^{2}=54.0 \mu \mathrm{~J}$

Problem 26.36

A uniform electric field $E=3000 \mathrm{~V} / \mathrm{m}$ exists within a certain region. What volume of space contains an energy equal to $1.00 \times 10^{-7} \mathrm{~J}$? Express your answer in cubic meters and in liters.

$$
\begin{aligned}
& u=\frac{U}{V}=\frac{1}{2} \epsilon_{0} E^{2} \\
& \frac{1.00 \times 10^{-7}}{V}=\frac{1}{2}\left(8.85 \times 10^{-12}\right)(3000)^{2} \\
& V=2.51 \times 10^{-3} \mathrm{~m}^{3}=\left(2.51 \times 10^{-3} \mathrm{~m}^{3}\right)\left(\frac{1000 \mathrm{~L}}{\mathrm{~m}^{3}}\right)=2.51 \mathrm{~L}
\end{aligned}
$$

Capacitors with Dielectrics

A dielectric is a nonconducting material that, when placed between the plates of a capacitor, increases the capacitance.

- Dielectrics include rubber, glass, and waxed paper

With a dielectric, the capacitance becomes $\mathrm{C}=\kappa \mathrm{C}_{\mathrm{o}}$.

- The capacitance increases by the factor κ when the dielectric completely fills the region between the plates.
- k is the dielectric constant of the material.

If the capacitor remains connected to a battery, the voltage across the capacitor necessarily remains the same.

If the capacitor is disconnected from the battery, the capacitor is an isolated system and the charge remains the same.

Dielectrics, cont

For a parallel-plate capacitor, $C=\kappa\left(\varepsilon_{0} A\right) / d$
In theory, d could be made very small to create a very large capacitance.
In practice, there is a limit to d.

- d is limited by the electric discharge that could occur though the dielectric medium separating the plates.
For a given d, the maximum voltage that can be applied to a capacitor without causing a discharge depends on the dielectric strength of the material.

Dielectrics, final

Dielectrics provide the following advantages:

- Increase in capacitance
- Increase the maximum operating voltage
- Possible mechanical support between the plates
- This allows the plates to be close together without touching.
- This decreases d and increases C.

Some Dielectric Constants and Dielectric Strengths

TABLE 26.1 Approximate Dielectric Constants and Dielectric Strengths

 of Various Materials at Room Temperature| Material | Dielectric Constant $\boldsymbol{\kappa}$ | ${\text { Dielectric } \text { Strength }^{\mathbf{a}}(\mathbf{1 0} \mathbf{6} \mathbf{V} / \mathbf{m})}^{\text {Air (dry) }}$ |
| :--- | :---: | :---: |
| Bakelite | 1.00059 | 3 |
| Fused quartz | 4.9 | 24 |
| Mylar | 3.78 | 8 |
| Neoprene rubber | 3.2 | 7 |
| Nylon | 6.7 | 12 |
| Paper | 3.4 | 14 |
| Paraffin-impregnated paper | 3.7 | 16 |
| Polystyrene | 3.5 | 11 |
| Polyvinyl chloride | 2.56 | 24 |
| Porcelain | 3.4 | 40 |
| Pyrex glass | 6 | 12 |
| Silicone oil | 5.6 | 14 |
| Strontium titanate | 2.5 | 15 |
| Teflon | 233 | 8 |
| Vacuum | 2.1 | 60 |
| Water | 1.000 00 | - |
| a | 80 | - |
| The dielectric strength equals the maximum electric field that can exist in a dielectric without electrical breakdown. | | |

Example 26.6 A Paper-Filled Capacitor

A parallel-plate capacitor has plates of dimensions 2.0 cm by 3.0 cm separated by a $1.0-\mathrm{mm}$ thickness of paper. (A) Find its capacitance.

$$
\begin{aligned}
C & =\kappa \frac{\epsilon_{0} A}{d} \\
& =3.7\left(\frac{\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(6.0 \times 10^{-4} \mathrm{~m}^{2}\right)}{1.0 \times 10^{-3} \mathrm{~m}}\right) \\
& =20 \times 10^{-12} \mathrm{~F}=20 \mathrm{pF}
\end{aligned}
$$

(B) What is the maximum charge that can be placed on the capacitor?

$$
\begin{aligned}
\Delta V_{\max } & =E_{\max } d=\left(16 \times 10^{6} \mathrm{~V} / \mathrm{m}\right)\left(1.0 \times 10^{-3} \mathrm{~m}\right) \\
& =16 \times 10^{3} \mathrm{~V}
\end{aligned}
$$

Hence, the maximum charge is

$$
\begin{aligned}
Q_{\max } & =C \Delta V_{\max }=\left(20 \times 10^{-12} \mathrm{~F}\right)\left(16 \times 10^{3} \mathrm{~V}\right) \\
& =0.32 \mu \mathrm{C}
\end{aligned}
$$

Example 26.7 Energy Stored Before and After

A parallel-plate capacitor is charged with a battery to a charge Q_{0}, as shown in the Figure. The battery is then removed, and a slab of material that has a dielectric constant κ is inserted between the plates. Find the energy stored in the capacitor before and after the dielectric is inserted.

$$
\begin{aligned}
& U_{0}=\frac{Q_{0}{ }^{2}}{2 C_{0}} \\
& U=\frac{Q_{0}{ }^{2}}{2 C}
\end{aligned}
$$

$$
U=\frac{Q_{0}{ }^{2}}{2 \kappa C_{0}}=\frac{U_{0}}{\kappa}
$$

(a)

(b)

problem 26.47

A parallel-plate capacitor in air has a plate separation of 1.50 cm and a plate area of $25.0 \mathrm{~cm}^{2}$. The plates are charged to a potential difference of 250 V and disconnected from the source. The capacitor is then immersed in distilled water. Determine (a) the charge on the plates before and after immersion, (b) the capacitance and potential difference after immersion, and (c) the change in energy of the capacitor. Assume the liquid is an insulator.

Originally,

$$
C=\frac{\in_{0} A}{d}=\frac{Q}{(\Delta V)_{i}} .
$$

(a) The charge is the same before and after immersion, with value $Q=\frac{\in_{0} A(\Delta V)_{i}}{d}$.

$$
Q=\frac{\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(25.0 \times 10^{-4} \mathrm{~m}^{2}\right)(250 \mathrm{~V})}{\left(1.50 \times 10^{-2} \mathrm{~m}\right)}=369 \mathrm{pC}
$$

(b) Finally,

$$
\begin{aligned}
& C_{f}=\frac{\kappa \in_{0} A}{d}=\frac{Q}{(\Delta V)_{f}} \quad C_{f}=\frac{80.0\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(25.0 \times 10^{-4} \mathrm{~m}^{2}\right)}{\left(1.50 \times 10^{-2} \mathrm{~m}\right)}=118 \mathrm{pF} \\
&(\Delta V)_{f}=\frac{Q d}{\kappa \epsilon_{0} A}=\frac{\epsilon_{0} A(\Delta V)_{i} d}{\kappa \epsilon_{0} A d}=\frac{(\Delta V)_{i}}{\kappa}=\frac{250 \mathrm{~V}}{80.0}=3.12 \mathrm{~V} .
\end{aligned}
$$

problem 26.47

A parallel-plate capacitor in air has a plate separation of 1.50 cm and a plate area of $25.0 \mathrm{~cm}^{2}$. The plates are charged to a potential difference of 250 V and disconnected from the source. The capacitor is then immersed in distilled water. Determine (a) the charge on the plates before and after immersion, (b) the capacitance and potential difference after immersion, and (c) the change in energy of the capacitor. Assume the liquid is an insulator.
(c) Originally, $U_{i}=\frac{1}{2} C(\Delta V)_{i}^{2}=\frac{\in_{0} A(\Delta V)_{i}^{2}}{2 d}$.

Finally,

$$
U_{f}=\frac{1}{2} C_{f}(\Delta V)_{f}^{2}=\frac{\kappa \in_{0} A(\Delta V)_{i}^{2}}{2 d \kappa^{2}}=\frac{\in_{0} A(\Delta V)_{i}^{2}}{2 d \kappa} .
$$

$$
\Delta U=U_{f}-U_{i}=\frac{-\epsilon_{0} A(\Delta V)_{i}^{2}(\kappa-1)}{2 d \kappa}
$$

$$
\Delta U=-\frac{\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(25.0 \times 10^{-4} \mathrm{~m}^{2}\right)(250 \mathrm{~V})^{2}(79.0)}{2\left(1.50 \times 10^{-2} \mathrm{~m}\right)(80.0)}=-45.5 \mathrm{~nJ} .
$$

