## Linear System Equations

## Mongi BLEL

## King Saud University

July 4, 2019



## Table of contents



## 1 Introduction to Linear System Equations

2 Gauss And Gauss Jordan Methods

3 Homogeneous Linear Systems





# Introduction to Linear System Equations

## Definition

A linear system of equations with m equations and n unknowns is defined as follows:

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,n}x_n = b_2 \\ \vdots & \vdots & \ddots + \vdots + \vdots \\ a_{m,1}x_1 + a_{m,2}x_2 + \cdots + a_{m,n}x_n = b_m. \end{cases}$$

where  $b_1, \ldots, b_n$ ,  $(a_{j,k})$  are real numbers with  $(1 \le j \le m, 1 \le k \le n)$  called the data of the system and  $x_1, \ldots, x_n$  the unknowns or the variables of the system.

#### Introduction to Linear System Equations

Gauss And Gauss Jordan Methods Homogeneous Linear Systems Crammer Method

This linear system can be represented in matrix form: AX = B where

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}, \qquad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}, \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Crammer Method

## Example

The following linear system with two variables

$$\begin{cases} 4x - y = 5\\ -7x + 2y = 3 \end{cases}$$

can be interpreted as the intersection in the plane of the straight lines of equations respectively 4x - y = 5 and -7x + 2y = 3.

## Example

The following linear system with three variables

$$\begin{cases} x + y -3 & z = 1 \\ 2 + y - z = 3 \end{cases}$$

can be interpreted as the intersection in the space of the planes of equations respectively x + y - 3z = 1 and 2x + y - z = 3. The solution of this system is  $\{(2,1,0)+z(-2,-5,1); z \in \mathbb{R}\}$ . This is the equation of the line passing through the point A of coordinates (2,1,0) and parallel of the vector v of coordinates (-2,-5,1).

#### Introduction to Linear System Equations

Gauss And Gauss Jordan Methods Homogeneous Linear Systems Crammer Method

## Example

Let the matrices 
$$A = \begin{pmatrix} 1 & -1 \\ 1 & -2 \end{pmatrix}$$
 and  $C = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$  and we look  
for a matrix of order (2, 3) such that  $AB = C$ .  
If  $B = \begin{pmatrix} x & y & z \\ t & u & v \end{pmatrix}$  we find the following linear system:

$$\begin{cases} x - t &= 0 \\ x - 2t &= 1 \\ y - u &= 1 \\ y - 2u &= 2 \\ z - v &= 2 \\ z - 2v &= 3 \end{cases}$$

The solution of this system is (-1, 0, 1, -1, -1, -1)

$$x = t = -1, y = 0, u = -1, z = 1, v = -1.$$

#### Introduction to Linear System Equations

Gauss And Gauss Jordan Methods Homogeneous Linear Systems Crammer Method

## Definition

- We say that two linear systems are equivalent if they have the same set of solutions.
- We say that a linear system is consistent if it has solutions and we call that it is inconsistent if it has no solutions.

## Gauss And Gauss Jordan Method

The augmented matrix of the linear system AX = B is the matrix [A|B]. The elementary row operations on the augmented matrix of a system produce the augmented matrix of an equivalent system. The Gauss-Jordan elimination method to solve a system of linear equations is described in the following steps.

- Write the augmented matrix of the system.
- Our selementary row operations to transform the augmented matrix in a reduced row echelon form.
- **③** Solve the obtained triangular system.

## The Gauss and Gauss Jordan Method

• The Gauss Jordan method consists to take the reduced row echelon form of the augmented matrix [A|B] and solve the obtained system.

## Examples

Consider the following linear system

$$\begin{cases} x + 2y - z = -4 \\ -x + y = -2 \\ y - z = -4 \end{cases}$$
  
The augmented matrix of the system is

$$\begin{bmatrix} 1 & 2 & -1 & | -4 \\ -1 & 1 & 0 & | -2 \\ 0 & 1 & -1 & | -4 \end{bmatrix}$$

and the matrix

$$\begin{bmatrix} 1 & 2 & -1 & | -4 \\ 0 & 1 & -1 & | -4 \\ 0 & 0 & 1 & | 3 \end{bmatrix}$$

is a row echelon form of this matrix.

Using Gauss method, the system has a unique solution which is x = 1, y = -1, z = 3.

The reduced row echelon form of this matrix is

$$\begin{bmatrix} 1 & 0 & 0 & | \ 1 \\ 0 & 1 & 0 & | \ -1 \\ 0 & 0 & 1 & | \ 3 \end{bmatrix}.$$

Using Gauss Jordan method, the system has a unique solution which is x = 1, y = -1, z = 3.

Consider the following linear system  

$$\begin{cases}
x + 2y - z + t = 1 \\
3x - y + 5z - t = 2 \\
5x + 3y + 3z + t = m
\end{cases}; m \in \mathbb{R}.$$

$$\begin{bmatrix} 1 & 2 & -1 & 1 & | & 1 \\ 0 & 1 & -\frac{8}{7} & \frac{4}{7} & | & \frac{1}{7} \\ 0 & 0 & 0 & 0 & | m-4 \end{bmatrix}$$

is a row echelon form of this matrix . If  $m \neq 4$ , the system, is inconsistent.

If m = 4, the system has infinite solutions :

$$\{(\frac{5}{7}-\frac{9}{7}z+\frac{1}{7}t,\frac{1}{7}+\frac{8}{7}z-\frac{4}{7}t,z,t)\in\mathbb{R}^4\}.$$

Consider the following linear system  $\left\{ \begin{array}{l} \\ \end{array} \right.$ 

$$\begin{array}{rcrr} -2y+3z &=& 0\\ 2x-4y+2z &=& 1\\ -x-2y+5z &=& 0\\ x-2y &=& 1 \end{array}$$

The augmented matrix of the system is:

$$\begin{bmatrix} 0 & -2 & 3 & 0 \\ 2 & -4 & 2 & 1 \\ -1 & -2 & 5 & 0 \\ 1 & -2 & 0 & 1 \end{bmatrix}$$

A row echelon form of the augmented matrix is

$$\begin{bmatrix} 1 & -2 & 0 & | \\ 0 & -2 & 3 & | \\ 0 & 0 & 1 & | \\ 0 & 0 & 0 & | 3 \end{bmatrix}$$

The system is inconsistent.

Give the relations between the numbers a, b and c such that the following linear system is consistent.

 $\begin{cases} x+y+2z &= a\\ x+z &= b\\ 2x+y+3z &= c \end{cases}$ 

The augmented matrix of the system is:  $\begin{vmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ \end{vmatrix}$ .

The system is consistent if and only if c - a - b = 0.

Consider the following linear system  

$$\begin{cases}
x + my + (m-1)z = m+1 \\
3x + 2y + mz = 3 \\
(m-1)x + my + (m+1)z = m-1
\end{cases}$$
The determinant of the system is  $m^2(m-4)$ .  
If  $m = 0$ , the augmented matrix of the system is:  

$$\begin{bmatrix} 1 & 0 & -1 & | & 1 \\
3 & 2 & 0 & | & 3 \\
-1 & 0 & 1 & | -1
\end{bmatrix}$$

A row echelon form of the augmented matrix is 
$$\begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 1 & \frac{3}{2} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
.  
The system has an infinity of solutions  $\{(1 + z, -\frac{3}{2}z, z); z \in \mathbb{R}\}$ .  
If  $m = 4$ , a row echelon form of the augmented matrix is 
$$\begin{bmatrix} 1 & 4 & 3 & | & 5 \\ 0 & 1 & \frac{1}{2} & | & 0 \\ 0 & 0 & 0 & | & 12 \end{bmatrix}$$
.

The system is inconsistent.

# Homogeneous Linear Systems

## Definition

We say that a linear system AX = B is homogeneous if B = 0.

## Remarks

- Any homogeneous linear system is consistent. 0 is a solution of the system.
- If X<sub>1</sub> and X<sub>2</sub> are solutions of the homogeneous system
   AX = 0, then X<sub>1</sub> + λX<sub>2</sub> is also a solution of the linear system for all λ ∈ ℝ.
- If the homogeneous linear system AX = 0 has a non zero solution, it has an infinite number of solutions.

#### Theorem

If  $X_0$  is a solution of the linear system AX = B, then any solution X of the system is in the following form:  $X = X_0 + X_1$  with  $X_1$  is a solution of the homogeneous system. AX = 0.

# **Conclusion** Any consistent linear system can has only one solution or an infinite number of solutions.

## Crammer Method

#### Theorem

If A is a square matrix of order n and has an inverse, then the linear system AX = B has the following unique solution

$$x_1 = \frac{\det A_1}{\det A}, \dots, x_n = \frac{\det A_n}{\det A}.$$

with  $A_j$  is the matrix obtained by replace the  $j^{\text{th}}$  column in the matrix A by the column matrix B.

## Example

Use Crammer method to solve the following system:

$$\begin{cases} 3x - 2z = 2\\ -2x + 3y - 2z = 3\\ -5x + 4y - z = 1 \end{cases}$$
$$\begin{vmatrix} 3 & 0 & -2\\ -2 & 3 & -2\\ -5 & 4 & -1 \end{vmatrix} = 1, \qquad \begin{vmatrix} 2 & 0 & -2\\ 3 & 3 & -2\\ 1 & 4 & -1 \end{vmatrix} = -8 = x, \\\begin{vmatrix} 3 & 2 & -2\\ -2 & 3 & -2\\ -5 & 1 & -1 \end{vmatrix} = -13 = y, \qquad \begin{vmatrix} 3 & 0 & 2\\ -2 & 3 & 3\\ -5 & 4 & 1 \end{vmatrix} = -13 = z.$$