The Vector Spaces

Mongi BLEL

King Saud University

July 4, 2019

Table of contents

Introduction to Vector Spaces

Definition

We say that a non empty set $\mathbb E$ is a vector space on $\mathbb R$ if:

- **①** (Closure for the sum operation) $u + v \in \mathbb{E}$, $\forall u, v \in \mathbb{E}$.
- ② (Associativity of the sum operation) u + (v + w) = (u + v) + w, for all $u, v, w \in \mathbb{E}$
- (The identity element) There is $0 \in \mathbb{E}$ called the identity element of the sum operation such that $u+0=0+u=u, \quad \forall u \in \mathbb{E}$.
- For all $u \in \mathbb{E}$, there is $v \in \mathbb{E}$ such that u + v = v + u = 0. The vector v is called the symmetric of u and written -u.
- **6** (Commutativity) u + v = v + u, $\forall u, v \in \mathbb{E}$.

- **①** (The closure of the exterior operation) $\forall a \in \mathbb{R}$ and $u \in \mathbb{E}$, $au \in \mathbb{E}$,
- ② If $u, v \in \mathbb{E}$ and $a \in \mathbb{R}$, then a(u + v) = au + av.
- 3 If $u \in \mathbb{E}$ and $a, b \in \mathbb{R}$, then (a + b)u = au + bu,
- **3** If $u \in \mathbb{E}$, then 1.u = u.

- $lackbox{1}{}$ \mathbb{R}^n is a vector space .
- 2 The set $\{(x, y, 2x + 3y); x, y \in \mathbb{R}\}$ is a vector space.
- **3** The set of polynomials $\mathcal{P} = \mathbb{R}[X]$ is a vector space . Also the set of polynomials of degree less then n, $\mathcal{P}_n = \mathbb{R}_n[X]$ is a vector space .

The Vector Sub-Spaces

Definition

Let V be a vector space and F a subset of V. We say that F is sub-space of V if F is vector space with the same operations on the vector space V.

Theorem

Let V be a vector space and F a subset of V.

- F is a sub-space of V if and only if
 - **1** $0 \in F$,
 - 2 If $u, v \in F$, then $u + v \in F$,
 - **3** If $u \in F$, $a \in \mathbb{R}$, then $au \in F$.

- **1** The set $F = \{ \begin{pmatrix} a & b \\ 0 & 2a b \end{pmatrix}; a, b \in \mathbb{R} \}$ is a sub-space of $V = M_2(\mathbb{R})$.
- ② Let $A \in M_{m,n}(\mathbb{R})$ be a matrix and $F = \{X \in \mathbb{R}^n; AX = 0\}$. F is sub-space of $V = \mathbb{R}^n$. (F is the set of solutions of the homogeneous system AX = 0).
- **③** The set $F = \{(x, x + 1); x \in \mathbb{R}\}$ is not a sub-space of \mathbb{R}^2 since $(0,0) \notin F$.

The set $W = \{A \in M_n / A = -A^T\}$ is a sub-space of $M_n(\mathbb{R})$. Indeed: if $A, B \in W$ and $\lambda \in \mathbb{R}$

$$(A + B)^T = A^T + B^T = -A - B$$

and

$$(\lambda A)^T = \lambda A^T = -\lambda A.$$

Then W is a sub-space of M_n .

The set
$$E = \{(x,y) \in \mathbb{R}^2; xy = 0\}$$
 is not a sub-space since $(1,0) \in E$ and $(0,1) \in E$ but $(1,0) + (0,1) = (1,1) \notin E$.

Definition

Let V be a vector space and let v_1, \ldots, v_n be a finite vectors in V. We say that a vector $w \in V$ is a linear combination of the vectors v_1, \ldots, v_n if there is $x_1, \ldots, x_n \in \mathbb{R}$ such that

$$w = x_1v_1 + \ldots + x_nv_n.$$

Example

The vector (4,1,1) is a linear combination of the vectors (1,0,2),(2,-1,3), (0,-1,1) because

$$(4,1,1) = -2(1,0,2) + 3(2,-1,3) - 4(0,-1,1).$$

The vector (1,1,2) is not a linear combination of the vectors (1,0,2), (0,-1,1) because the linear system (1,1,2)=x(1,0,2)+y(0,-1,1) don't have a solution.

In \mathbb{R}^4 is the vectors (a, 1, b, 1) and (a, 1, 1, b) are linear combination of the vectors $e_1 = (1, 2, 3, 4)$ and $e_2 = (1, -2, 3, -4)$.

The vector $(a, 1, b, 1) \in \text{Vect}(e_1, e_2)$ if and only if the linear system

$$AX = B$$
 is consistent with $A = \begin{pmatrix} 1 & 1 \\ 2 & -2 \\ 3 & 3 \\ 4 & -4 \end{pmatrix}$ and $B = \begin{pmatrix} a \\ 1 \\ b \\ 1 \end{pmatrix}$.

The system is not consistent because the second and the forth equations can not be true in the same time. ((2a-2b=1, 4a-4b=1))

The vector $(a, 1, 1, b) \in Vect(e_1, e_2)$ if and only if the linear system

$$AX = B$$
 is consistent with $A = \begin{pmatrix} 1 & 1 \\ 2 & -2 \\ 3 & 3 \\ 4 & -4 \end{pmatrix}$ and $B = \begin{pmatrix} a \\ 1 \\ 1 \\ b \end{pmatrix}$.

The system has a unique solution and in this case $a = \frac{1}{3}$ and b = 2.

Let E be the vector sub-space of \mathbb{R}^3 generated by the vectors (2,3,-1) and (1,-1,-2) and let F be the sub-space of \mathbb{R}^3 generated by the vectors (3,7,0) and (5,0,-7). The sub-spaces E and F are equal.

$$\begin{cases} 2x + y = a \\ 3x - y = b \\ -x - 2y = c \end{cases}$$

This system is equivalent with the following system

$$\begin{cases} x + 2y = -c \\ -3y = a + 2c \\ -7y = b + 3c \end{cases}$$

This system is consistent if and only if 7a - 3b + 5c = 0.

We remark that the vectors (2,3,-1) and (1,-1,-2) are solutions of the system, then $F \subset E$.

With the same method, the vectors (2,3,-1) and (1,-1,-2) are in the sub-space F. This proves that E=F.

Is there $a,b \in \mathbb{R}$ such that the vector v=(-2,a,b,5) is in the sub-space of \mathbb{R}^4 generated by the vectors u=(1,-1,1,2) and v=(-1,2,3,1).

Solution

The vector v = (-2, a, b, 5) is in the sub-space of \mathbb{R}^4 generated by the vectors u = (1, -1, 1, 2) and v = (-1, 2, 3, 1) if the following

linear system is consistent
$$AX = B$$
 with $A = \begin{pmatrix} 1 & -1 \\ -1 & 2 \\ 1 & 3 \\ 2 & 1 \end{pmatrix}$ and

$$B = \begin{pmatrix} -2 \\ a \\ b \\ 5 \end{pmatrix}.$$

This system is consistent if and only if $3 = a - 2 = \frac{b+2}{4}$. Then a = 5 and b = 10.

Theorem

Let A be the matrix of type (m, n) and let $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ be the

matrix of type (n,1). If C_1, \ldots, C_n are the columns of the matrix A, then

$$AX = x_1 C_1 + \ldots + x_n C_n.$$

Corollary

Let A be a matrix of type (m, n).

The linear system AX = B is consistent if and only if the matrix B is a linear combination of the columns of the matrix A.

Definition

Let $S = \{v_1, \dots, v_n\}$ be a set of vectors in a vector space V. We say that the vector space V is generated (or spanned) by the set S if any vector in V is a linear combination of the vectors v_1, \dots, v_n . (We say also that S is a spanning set of V).

Theorem

Let $S = \{v_1, \dots, v_n\} \subset \mathbb{R}^m$ and A the matrix of type (m, n) with columns v_1, \dots, v_n .

The set S spans the vector space \mathbb{R}^m if and only if the system AX = B is consistent for all $B \in \mathbb{R}^m$.

Determine whether the vectors $v_1 = (1, -1, 4)$, $v_2 = (-2, 1, 3)$, and $v_3 = (4, -3, 5)$ span \mathbb{R}^3 .

We solve the following linear system AX = B, where

$$A=egin{pmatrix}1&-2&4\\-1&1&-3\\4&3&5\end{pmatrix}$$
, $B=egin{pmatrix}a\\b\\c\end{pmatrix}$ for arbitrary $a,b,c\in\mathbb{R}$.

A reduced of the augmented matrix is given by:

$$\begin{bmatrix} 1 & 0 & 2 & -a-2b \\ 0 & 1 & -1 & -a-b \\ 0 & 0 & 0 & 7a+11b+c \end{bmatrix}.$$

This system has a solution only when 7a + 11b + c = 0. Thus, the vectors do not span \mathbb{R}^3 .

Determine whether the vectors
$$v_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$, span the vector space $F = \{ \begin{pmatrix} a & b \\ 0 & 2a - b \end{pmatrix}; \ a, b \in \mathbb{R} \}$.
$$\begin{pmatrix} a & b \\ 0 & 2a - b \end{pmatrix} = xv_1 + yv_2 \iff \begin{cases} x + 2y & = a \\ x + y & = b \\ x + 3y & = 2a - b \end{cases}$$

This system has the unique solution x = 2b - a and y = a - b.

$\mathsf{Theorem}$

Let $S = \{v_1, \dots, v_n\}$ be a set of vectors in a vector space V, then

- the set W of linear combinations of the vectors of S is a linear sub-space in V.
- ② W is the smallest sub-space of V which contains S. This sub-space is called the sub-space generated (or spanned) by the set S and denoted by $\langle S \rangle$ or $\mathrm{Vect}(S)$.

Let
$$F = \left\{ \begin{pmatrix} a & b \\ 0 & 2a - b \end{pmatrix}; \ a, b \in \mathbb{R} \right\}.$$

$$\begin{pmatrix} a & b \\ 0 & 2a - b \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}. \text{ Then } F \text{ is the sub-space}$$
of $V = M_2(\mathbb{R})$ spanned by $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \right\}.$

Definition

We say that the set of vectors v_1, \ldots, v_n in a vector space V are linearly independent if the equation

$$x_1v_1+\ldots,+x_nv_n=0$$

has 0 as unique solution.

Example

The vectors u=(1,1,-2), v=(1,-1,2) and w=(3,0,2) are linearly independent in \mathbb{R}^3 .

$$xu + yv + zw = (0,0,0) \iff \begin{cases} x + y + 3z & = 0 \\ x - y & = 0 \\ -2x + 2y + 2z & = 0 \end{cases}$$

This system has 0 as unique solution.

The matrix of this system is
$$\begin{pmatrix} 1 & 1 & 3 \\ 1 & -1 & 0 \\ -2 & 2 & 2 \end{pmatrix}$$
 and its determinant is

-4.

The set of vectors
$$\{P_1 = 1 + x + x^2, P_2 = 2 - x + 3x^2, P_3 = x - x^2\}$$
 is linearly independent in \mathcal{P}_2 . $aP_1 + bP_2 + cP_3 = 0 \iff (a+2b) + (a-b+c)x + (a+3b-c)x^2 = 0$ $0 \iff \begin{cases} a+2b = 0 \\ a-b+c = 0. \\ a+3b-c = 0 \end{cases}$

Definition

We say that the vectors v_1, \ldots, v_n in a vector space V are linearly dependent if they are not linearly independent.

Example

The vectors u = (0, 1, -2, 1), v = (1, 0, 2, -1) and w = (3, 2, 2, -1) are linearly dependent in \mathbb{R}^4 .

$$xu + yv + zw = (0,0,0,0) \iff \begin{cases} y + 3z &= 0 \\ x + 2z &= 0 \\ -2x + 2y + 2z &= 0 \\ x - y - z &= 0 \end{cases}$$

This system has infinite solutions.

The extended matrix of this system is
$$\begin{bmatrix} 0 & 1 & 3 & 0 \\ 1 & 0 & 2 & 0 \\ -2 & 2 & 2 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$
 and the

reduced row form of this matrix is :
$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Theorem

Let $S = \{v_1, \dots, v_n\}$ be a set of vectors in a vector space V, with $n \ge 2$.

The set S is linearly dependent if and only if there is a vector of S which is a linear combination of the rest of vectors.

Theorem

Let $S = \{v_1, \dots, v_n\} \subset \mathbb{R}^m$ and A the matrix of type (m, n) such that its columns are the vectors of S.

The set S is linearly independent if and only if the homogeneous system AX = 0 has 0 as unique solution.

- If A is a matrix of type (m, n) with m < n. Then the homogeneous system AX = 0 has an infinite solutions.
- ② If $S = \{v_1, \dots, v_n\} \subset \mathbb{R}^m$ with m < n, then the set S is linearly dependent.

Base and Dimension

Definition

Let $S = \{v_1, \dots, v_n\}$ be a set of vectors in a vector space V. We say that S is a basis of the vector space V if :

- $oldsymbol{0}$ The set S generates the vector space V
- ② The set S is linearly independent.

Theorem

If $S = \{v_1, \dots, v_n\}$ is a basis of the vector space V. Any vector $v \in V$ can be written uniquely as a linear combination of vectors in the basis S.

Remark

Let $S = \{e_1, \dots, e_n\}$ be the set of the vectors in the vector space \mathbb{R}^n , where

$$e_1 = (1, 0, \dots, 0), \dots, e_k = (0, \dots, 0, 1, 0, \dots 0), \dots, e_n = (0, \dots, 0, 1).$$

The set S is a basis of \mathbb{R}^n and is called the natural basis of \mathbb{R}^n .

Exercise

Prove that $S = \{1, X, \dots, X^n\}$ is a basis of the vector space \mathcal{P}_n .

Let $v_1 = (\lambda, 1, 1)$, $v_2 = (1, \lambda, 1)$ and $v_3 = (1, 1, \lambda)$.

Find the values of $\lambda \in \mathbb{R}$ such that $\{v_1, v_2, v_3\}$ is a basis of the vector space \mathbb{R}^3 .

Solution

The set $\{v_1, v_2, v_3\}$ is linearly independent if 0 the unique solution of the equation

$$xv_1+yv_2+zv_3=0.$$

This is equivalent that the following matrix has an inverse:

$$A = \begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix}.$$

Then $\lambda \notin \{-2, 1\}$.

The set $\{v_1, v_2, v_3\}$ generates the vector space \mathbb{R}^n because the linear system AX = B is consistent for all $B \in \mathbb{R}^n$ since the matrix A has an inverse.

Theorem

Let $S = \{v_1, \dots, v_n\}$ be a basis of the vector space V and let $T = \{u_1, \dots, u_m\}$ be a set of vectors. If m > n, then T is linearly dependent.

Corollary

If $S = \{v_1, \dots, v_n\}$ and $T = \{u_1, \dots, u_m\}$ are basis of the vector space V, then m = n.

Definition

If $S = \{v_1, \dots, v_n\}$ is a basis of the vector space V then the number of vectors n of S is called the dimension of the vector space V and denoted by: $\dim V = n$.

Theorem

Let V is a vector space of dimension n. If $S = \{v_1, \dots, v_n\}$ in V. Then

S is linearly independent if and only if S generates the vector space V and this is equivalent also with S is a basis of V.

Theorem

If $S = \{v_1, \dots, v_n\}$ generates the vector space V, then it contains a basis of the vector space V.

Remark

If $S = \{v_1, \dots, v_m\} \subset \mathbb{R}^n$ is a set of vectors and F the vector sub-space generated by S. We have the following two algorithms to construct a basis of F.

First Algorithm

- lacktriangle Construct the matrix A such that its rows are the vectors of S
- ② The non zeros rows of any row echelon form of the matrix A are a basis of the vector space $F = \langle S \rangle$.

Second Algorithm

- Construct the matrix A such that its columns are the vectors of S
- 2 Take any row echelon form C of the matrix A.
- **3** Let $C_{k_1}, \ldots C_{k_p}$ be the columns which contain a leading number and $k_1 < \ldots < k_p$. Then $\{v_{k_1}, \ldots, v_{k_p}\}$ is a basis of the vector space $F = \langle S \rangle$.

Theorem

- If $S = \{v_1, \dots, v_n\}$ is a set of vectors and generates the vector space V, then S contains a basis of the vector space V.
- ② If $S = \{v_1, \dots, v_n\}$ is a set of linearly independent vectors in the vector space V, then there is a basis T of V which contains the set S.

Let W be the sub-space of \mathbb{R}^5 generated by the set of following vectors:

$$v_1 = (1,0,2,-1,2), v_2 = (2,0,4,-2,4), v_3 = (1,2,-1,2,0), v_4 = (1,4,-4,5,-2).$$

- Find a basis of the sub-space W in $\{v_1, v_2, v_3, v_4\}$.
- ② Find a basis of \mathbb{R}^5 and contains $\{v_1, v_3\}$.

Solution

① Let matrix
$$A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 2 & 4 \\ 2 & 4 & -1 & -4 \\ -1 & -2 & 2 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix}$$
 with columns the

components of the vectors v_1, v_2, v_3, v_4 .

Then $\{v_1, v_3\}$ is basis of the sub-space W.

② If $e_1 = (1, 0, 0, 0, 0)$, $e_2 = (0, 1, 0, 0, 0)$, $e_3 = (0, 0, 1, 0, 0)$. Then $\{v_1, v_3, e_1, e_2, e_3\}$ is basis of \mathbb{R}^5 and contains $\{v_1, v_3\}$.

Let
$$W = \{(x, y, z, t) \in \mathbb{R}^4; \ 2x + y + z = 0, \ x - y + z = 0\}$$

- Prove that W is sub-space of \mathbb{R}^4
- 2 Find basis of the sub-space W.

Solution

 $u = (x, y, z, t) \in W \iff AX = 0$, where

$$A = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & -1 & 1 & 0 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}.$$

Since the set of solutions of an homogeneous linear system is a vector sub-space, then W is vector sub-space of \mathbb{R}^4 .

$$AX = 0 \iff \begin{cases} 2x + y + z = 0 \\ x - y + z = 0 \end{cases} \iff \begin{cases} x = -2y \\ z = 3y \end{cases}$$

$$\iff X = y \begin{pmatrix} -2 \\ 1 \\ 3 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Then $\{(-2,1,3,0),(0,0,0,1)\}$ is basis of the vector sub-space W.

In the vector space $V=\mathbb{R}^3$, give a set S of vectors in V such that S generates the vector space V and not linearly independent.

Solution

We can take

$$S = \{(1,0,0)\} \text{ and } T = \{(1,0,0), (0,1,0), (0,0,1), (1,1,1)\}.$$

Coordinate System and Change of Basis

Definition

If $S = \{v_1, \dots, v_n\}$ is a basis of the vector space V and if $v \in V$ such that

$$v = x_1v_1 + \dots x_nv_n$$

then $(x_1, ... x_n)$ are called the system of coordinates of the vector v with respect to the basis S. We denote

$$[v]_{S} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

and called the vector of coordinates of the vector v with respect to the basis S.

$\mathsf{Theorem}$

If $B = \{v_1, \ldots, v_n\}$ and $C = \{u_1, \ldots, u_n\}$ are two basis of the vector space V. We define the matrix ${}_{C}P_{B}$ of type n such that its columns are $[v_1]_{C}, \ldots, [v_n]_{C}$. This matrix ${}_{C}P_{B}$ has an inverse and

$$[v]_C = {}_C P_B[v]_B$$

for all $v \in V$.

The matrix $_{C}P_{B}$ is called the change of basis matrix from the basis B to the basis C.

Exercise

Let $B = \{v_1 = (0, 1, 1), v_2 = (1, 0, -2), v_3 = (1, 1, 0)\}$ be a basis of the vector space \mathbb{R}^3 and let $C = \{u_1 = (1, 0, 0), u_2 = (0, 1, 0), u_3 = (0, 0, 1)\}$ be the standard basis of the vector space \mathbb{R}^3 .

- Find the following matrix $_{C}P_{B}$ and $_{B}P_{C}$.
- $\textbf{2} \ \mathsf{Find} \ [v]_B \ \mathsf{if} \ [v]_C = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$

Exercise

Prove that in \mathbb{R}^3 , the vectors u=(1,0,1), v=(-1,-1,2) and w=(-2,1,-2) form a basis and find the coordinate system of the vector X=(x,y,z) in this basis.

Solution

The matrix which columns the vectors u = (1, 0, 1), v = (-1, -1, 2)

and
$$w = (-2, 1, -2)$$
 is $A = \begin{pmatrix} 1 & -1 & -2 \\ 0 & -1 & 1 \\ 1 & 2 & -2 \end{pmatrix}$.
Since $|A| = -3$, then $y = (1, 0, 1)$, $y = (-1, -1, 2)$ and $w = (-1, -1, 2)$

Since |A|=-3, then u=(1,0,1), v=(-1,-1,2) and w=(-2,1,-2) is a basis of the vector space \mathbb{R}^3 .

If
$$X = au + bv + cw$$
 then $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = A^{-1}X = \begin{pmatrix} 2y + z \\ \frac{-x+z}{3} \\ \frac{-x+3y+z}{3} \end{pmatrix}$.

Prove that the system of vectors $S = \{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}$ is a basis of the vector space \mathbb{R}^3 .

Find the coordinates of the following vectors (1,0,0), (1,0,1) and (0,0,1) in this basis.

Solution:

$$\begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{vmatrix} = -3 \neq 0.$$

Then S is a basis of the vector space \mathbb{R}^3 .

$$(1,0,0) = \frac{1}{3}(1,1,1) - \frac{1}{3}(-1,1,0) + \frac{1}{3}(1,0,-1).$$

Then coordinates in the basis S is $(\frac{1}{3}, -\frac{1}{3}, \frac{1}{3})$.

Solution

$$\begin{array}{l} (0,0,1) = \frac{1}{3}(1,1,1) - \frac{1}{3}(-1,1,0) - \frac{2}{3}(1,0,-1). \\ \text{Then coordinates in the basis } S \text{ is } (\frac{1}{3},-\frac{1}{3},-\frac{2}{3}). \\ (1,0,1) = (1,0,0) + (0,0,1). \\ \text{Then coordinates in the basis } S \text{ is } (\frac{2}{3},-\frac{2}{3},-\frac{1}{3}). \end{array}$$

Definition

Let A be a matrix of type (m, n).

The vector sub-space of \mathbb{R}^n spanned by the rows of the matrix A is called the row vector space of the matrix A and denoted by: row(A).

The vector sub-space of \mathbb{R}^m spanned by the columns of the matrix A is called the column vector space of the matrix A and denoted by: col(A).

Theorem

Let A be a matrix of type (m, n). If B is any matrix which is a result of some row operations on the matrix A, then row(A) = row(B).

Theorem

Let A be a matrix of type (m, n) and if B any row echelon form of the matrix A. Then the set of non zero rows of the matrix B are linearly independent.

Definition

Let A be a matrix of type (m, n).

The dimension of the vector space row(A) is called the rank of the A.

 $rank(A) = \dim(row(A)).$

Remark

Let A be a matrix of type (m, n).

The rank of the matrix A is the numbers of leading numbers in any row echelon form of the matrix A.

Theorem

Let A be a matrix of type (m, n), then

$$rank(A) = \dim(row(A)) = \dim(col(A)).$$

Corollary

Let A be a matrix of type (m, n), then

$$\operatorname{rank}(A) = \operatorname{rank}(A^T).$$

Corollary

If A is a matrix of type (m, n) and P is any invertible matrix of type m and Q an invertible matrix of type n, then

$$\operatorname{rank}(A)=\operatorname{rank}(PAQ).$$

Proof

There E_1, \ldots, E_p elementary matrix of order m such that $P = E_1 \ldots E_p$.

We know that if E is a elementary matrix which corresponds to an elementary row operation R, then EA is the result of the elementary row operation R on the matrix A. Then

$$\operatorname{rank}(A) = \operatorname{rank}(PA).$$

Also $\operatorname{rank}(PAQ) = \operatorname{rank}(PAQ)^T = \operatorname{rank}(Q^T A^T P^T) = \operatorname{rank}(A^T P^T) = \operatorname{rank}(PA) = \operatorname{rank}(A).$

Theorem

If A is a matrix of type (m, n). We have the equivalence of the following statements:

- The homogeneous system AX = 0 has 0 as unique solution.
- 2 The columns of the matrix A are linearly independent.
- \circ rank(A) = n.
- **1** The matrix A^TA has an inverse.

Theorem

Let A be a matrix of type (m, n). We have the equivalence of the following statements

- **①** The system AX = B is consistent for all $B \in \mathbb{R}^m$.
- ② The columns of the matrix A generates the vector space \mathbb{R}^m .
- \mathbf{o} rank(A) = m.
- The matrix AA^T has an inverse.

Definition

Let A be a matrix of type (m, n). The vector sub-space

$$\{X \in \mathbb{R}^n; AX = 0\}$$

is called the nullspace of the matrix A and denoted by: N(A). Its dimension is denoted by $\operatorname{nullity}(A)$.

Also the vector sub-space

$$\{AX; X \in \mathbb{R}^n\}$$

is called the image of the matrix A and denoted by: Im(A).

Theorem

Let A be a matrix of type (m, n). Then Im(A) = col(A).

Rank-Nullity Theorem

For any matrix A of type (m, n),

$$\operatorname{nullity}(A) + \operatorname{rank}(A) = n.$$

Let the matrix
$$A = \begin{pmatrix} 1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 3 \\ 2 & 3 & 0 & 1 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$

- Find a basis of the vector space N(A).
- ② Find a basis of the vector space Col(A).
- 3 Find the rank of the matrix A.

Solution

The reduced row form the matrix
$$A$$
 is
$$\begin{pmatrix} 1 & 0 & 3 & 5 \\ 0 & 1 & -2 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

(-3,2,1,0), (-5,3,0,1) is basis of the vector space N(A) ...

- ② (0,1,2,1), (-1,2,3,1) is a basis of the vector space Col(A).
- **3** The rank of the matrix *A* is 2.

Let $e_1=(0,1,-2,1)$, $e_2=(1,0,2,-1)$, $e_3=(3,2,2,-1)$, $e_4=(0,0,1,0)$ and $e_5=(0,0,0,1)$ vectors in \mathbb{R}^4 . Is the following statements are true?

- $\ \ \, \textbf{(1,1,0,0)} \in \mathrm{Vect}\{e_1,e_2\} \cap \mathrm{Vect}\{e_2,e_3,e_4\}.$

Solution

• Let the matrix A which rows are the vectors e_1, e_2, e_3 . The vector space $Vect\{e_1, e_2, e_3\}$ is the row vector space of the matrix A.

The reduced row form of the matrix A is

$$A_1 = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Then $\operatorname{dimVect}\{e_1, e_2, e_3\} = 2$.

We have $Vect\{e_1, e_2, e_3\} = Vect\{(1, 1, 0, 0), (-1, 1, -4, 2)\}$ if and only if the rank of the following matrix B is 2

$$B = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -2 & 1 \\ -1 & 1 & -4 & 2 \\ 1 & 1 & 0 & 0 \end{pmatrix}.$$

The reduced row form of the matrix
$$B$$
 is $A_2 = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Then

$$\operatorname{Vect}\{e_1,e_2,e_3\}=\operatorname{Vect}\{(1,1,0,0),(-1,1,-4,2)\}.$$

- ② $(1,1,0,0) = e_1 + e_2$, $2(1,1,0,0) = e_3 e_2$. Then $(1,1,0,0) \in \text{Vect}\{e_1,e_2\} \cap \text{Vect}\{e_2,e_3,e_4\}$.
- **③** $(1,1,0,0) \in \text{Vect}\{e_1,e_2\} \cap \text{Vect}\{e_2,e_3,e_4\}$ and $e_2 \in \text{Vect}\{e_1,e_2\} \cap \text{Vect}\{e_2,e_3,e_4\}$. Then $\dim \text{Vect}\{e_1,e_2\} \cap \text{Vect}\{e_2,e_3,e_4\} = 2$ and

$$\mathrm{dim}\mathrm{Vect}\{\mathit{e}_{1},\mathit{e}_{2}\}+\mathrm{Vect}\{\mathit{e}_{2},\mathit{e}_{3},\mathit{e}_{4}\}\leq3$$

Then $Vect\{e_1, e_2\} + Vect\{e_2, e_3, e_4\} \neq \mathbb{R}^4$.

```
Let in \mathbb{R}^3 the vectors, u_1=(1,2,1), u_2=(1,3,2), u_3=(1,1,0) and u_4=(3,8,5).
 Let F=\mathrm{Vect}(u_1,u_2) and G=\mathrm{Vect}(u_3,u_4).
 Prove that F=G.
```

Solution

As the vectors u_1 , u_2 are linearly independent and also the vectors u_3 , u_4 are linearly independent, then $\dim E = \dim F = 2$.

F = G if and only if the rank of the following matrix is 2, A =

$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & 1 & 0 \\ 3 & 8 & 5 \end{pmatrix}.$$

The reduced row form of this matrix is $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Then F = G.