The Vector Spaces

Mongi BLEL

King Saud University
February 12, 2021

Table of contents

(1) Introduction to Vector Spaces
(2) Vector Sub-Spaces
(3) Linear Combination and Generating sets

4 Linear Dependence and Independence
(5) Bases and Dimension
(6) Coordinate System and Change of Bases
(7) The null space, row space and column space of a matrix

Introduction to Vector Spaces

Definition

A non empty set \mathbb{V} is called a vector space on \mathbb{R} if:
(1) For any u and v in $\mathbb{V}, u+v$ is also in \mathbb{V};
(2) For any u, v, w in $\mathbb{V}, u+(v+w)=(u+v)+w$.
(3) There is an element in \mathbb{V} called the zero or null vector, which we denote by 0 , such that for all u in \mathbb{V} we have $0+u=u$.
(9) For every u in \mathbb{V}, there is a vector called the negative of u and denoted u, such that $u+u=0$.
(5) For any u and v in $\mathbb{V}, u+v=v+u$.
(1) If k is any scalar in \mathbb{R} and u is any vector in \mathbb{V}, then $k u$ is a vector in \mathbb{V}.
(2) For any scalar k in \mathbb{R} and any vectors u and v in \mathbb{V}, $k(u+v)=k u+k v$.
(3) For any scalars k and ℓ in \mathbb{R} and any vector u in \mathbb{V}, $(k+\ell) u=k u+\ell u$.
(9) For any scalars k and ℓ in \mathbb{R} and any vector u in \mathbb{V}, $k(\ell u)=(k \ell) u$.
(5) For any vector u in $\mathbb{V}, 1 u=u$.

Examples

(1) \mathbb{R}^{n} is a vector space .
(2) The set $\{(x, y, 2 x+3 y) ; x, y \in \mathbb{R}\}$ is a vector space.
(3) The set of polynomials $\mathcal{P}=\mathbb{R}[X]$ is a vector space. Also the set of polynomials of degree less then $n, \mathcal{P}_{n}=\mathbb{R}_{n}[X]$ is a vector space.

Some basic identities in a vector space

Theorem

Let V be a vector space. The following statements are always true.
(1) $0 u=0$;
(2) $k 0=0$;
(3) (1) $u=u$;
(9) If $k u=0$, then $k=0$ or $u=0$.

The Vector Sub-Spaces

Definition

Let $(V,+,$.$) be a vector space and F$ a nonempty subset of V. F is called a sub-space of V if F is itself a vector space with the same operations of the vector space V.

Theorem

Let $(V,+,$.$) be a vector space and F$ be a nonempty subset of V. F is a sub-space of V if and only if
(1) For any u and v in $F, u+v$ is also in F;
(2) For any k in \mathbb{R} and any vector u in F, the vector $k u$ is in F.

Examples

(1) The set $F=\left\{\left(\begin{array}{cc}a & b \\ 0 & 2 a-b\end{array}\right) ; a, b \in \mathbb{R}\right\}$ is a sub-space of $V=M_{2}(\mathbb{R})$.
(2) Let $A \in M_{m, n}(\mathbb{R})$ be a matrix and $F=\left\{X \in \mathbb{R}^{n} ; A X=0\right\}$. F is sub-space of $V=\mathbb{R}^{n}$. (F is the set of solutions of the homogeneous system $A X=0$).
(3) The set $F=\{(x, x+1) ; x \in \mathbb{R}\}$ is not a sub-space of \mathbb{R}^{2} since $(0,0) \notin F$.

Example

The set $W=\left\{A \in M_{n}: A=-A^{T}\right\}$ is a sub-space of $M_{n}(\mathbb{R})$. Indeed: if $A, B \in W$ and $\lambda \in \mathbb{R}$

$$
(A+B)^{T}=A^{T}+B^{T}=-A-B
$$

and

$$
(\lambda A)^{T}=\lambda A^{T}=-\lambda A
$$

Then W is a sub-space of M_{n}.

Example

The set $E=\left\{(x, y) \in \mathbb{R}^{2} ; x y=0\right\}$ is not a sub-space since $(1,0) \in E$ and $(0,1) \in E$ but $(1,0)+(0,1)=(1,1) \notin E$.

Definition

Let V be a vector space and let v_{1}, \ldots, v_{n} be a finite vectors in V. We say that a vector $w \in V$ is a linear combination of the vectors v_{1}, \ldots, v_{n} if there is $x_{1}, \ldots, x_{n} \in \mathbb{R}$ such that

$$
w=x_{1} v_{1}+\ldots+x_{n} v_{n} .
$$

Example

The vector $(4,1,1)$ is a linear combination of the vectors
$(1,0,2),(2,-1,3),(0,-1,1)$ because

$$
(4,1,1)=-2(1,0,2)+3(2,-1,3)-4(0,-1,1)
$$

Example

The vector $(1,1,2)$ is not a linear combination of the vectors
$(1,0,2),(0,-1,1)$ because the linear system
$(1,1,2)=x(1,0,2)+y(0,-1,1)$ don't have a solution.

Theorem

Let A be the matrix of type (m, n) and let $X=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ be the matrix of type $(n, 1)$. If C_{1}, \ldots, C_{n} are the columns of the matrix A, then

$$
A X=x_{1} C_{1}+\ldots+x_{n} C_{n} .
$$

Corollary

Let A be a matrix of type (m, n).
The linear system $A X=B$ is consistent if and only if the matrix B is a linear combination of the columns of the matrix A.

Definition

Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of vectors in a vector space V. We say that the vector space V is generated (or spanned) by the set S if any vector in V is a linear combination of the vectors v_{1}, \ldots, v_{n}. (We say also that S is a spanning set of V).

Theorem

Let $S=\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{R}^{m}$ and A the matrix of type (m, n) with columns v_{1}, \ldots, v_{n}.
The set S spans the vector space \mathbb{R}^{m} if and only if the system $A X=B$ is consistent for all $B \in \mathbb{R}^{m}$.

Example

Determine whether the vectors $v_{1}=(1,-1,4), v_{2}=(-2,1,3)$, and $v_{3}=(4,-3,5)$ span \mathbb{R}^{3}.
We solve the following linear system $A X=B$, where
$A=\left(\begin{array}{ccc}1 & -2 & 4 \\ -1 & 1 & -3 \\ 4 & 3 & 5\end{array}\right), B=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ for arbitrary $a, b, c \in \mathbb{R}$.

A reduced of the augmented matrix is given by:
$\left[\begin{array}{ccc|c}1 & 0 & 2 & -a-2 b \\ 0 & 1 & -1 & -a-b \\ 0 & 0 & 0 & 7 a+11 b+c\end{array}\right]$.

This system has a solution only when $7 a+11 b+c=0$. Thus, the vectors do not span \mathbb{R}^{3}.

Example

Determine whether the vectors $v_{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)$, span the vector space $F=\left\{\left(\begin{array}{cc}a & b \\ 0 & 2 a-b\end{array}\right) ; a, b \in \mathbb{R}\right\}$.
$\left(\begin{array}{cc}a & b \\ 0 & 2 a-b\end{array}\right)=x v_{1}+y v_{2} \Longleftrightarrow\left\{\begin{aligned} x+2 y & =a \\ x+y & =b \\ x+3 y & =2 a-b\end{aligned}\right.$.
This system has the unique solution $x=2 b-a$ and $y=a-b$.

Theorem

Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of vectors in a vector space V, then
(1) the set W of linear combinations of the vectors of S is a linear sub-space in V.
(2) W is the smallest sub-space of V which contains S. This sub-space is called the sub-space generated (or spanned) by the set S and denoted by $\langle S\rangle$ or $\operatorname{Vect}(S)$.

Example

$$
\begin{aligned}
& \text { Let } F=\left\{\left(\begin{array}{cc}
a & b \\
0 & 2 a-b
\end{array}\right) ; a, b \in \mathbb{R}\right\} . \\
& \left(\begin{array}{cc}
a & b \\
0 & 2 a-b
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)+b\left(\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right) . \text { Then } F \text { is the sub-space } \\
& \text { of } V=M_{2}(\mathbb{R}) \text { spanned by }\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right)\right\} .
\end{aligned}
$$

Example

In \mathbb{R}^{4} is the vectors $(a, 1, b, 1)$ and $(a, 1,1, b)$ are linear combination of the vectors $e_{1}=(1,2,3,4)$ and $e_{2}=(1,-2,3,-4)$.
The vector $(a, 1, b, 1) \in \operatorname{Vect}\left(e_{1}, e_{2}\right)$ if and only if the linear system
$A X=B$ is consistent with $A=\left(\begin{array}{cc}1 & 1 \\ 2 & -2 \\ 3 & 3 \\ 4 & -4\end{array}\right)$ and $B=\left(\begin{array}{l}a \\ 1 \\ b \\ 1\end{array}\right)$.
The system is not consistent because the second and the forth equations can not be true in the same time. $((2 a-2 b=1,4 a-4 b=1))$

The vector $(a, 1,1, b) \in \operatorname{Vect}\left(e_{1}, e_{2}\right)$ if and only if the linear system
$A X=B$ is consistent with $A=\left(\begin{array}{cc}1 & 1 \\ 2 & -2 \\ 3 & 3 \\ 4 & -4\end{array}\right)$ and $B=\left(\begin{array}{l}a \\ 1 \\ 1 \\ b\end{array}\right)$.
The system has a unique solution and in this case $a=\frac{1}{3}$ and $b=2$.

Example

Let E be the vector sub-space of \mathbb{R}^{3} generated by the vectors $(2,3,-1)$ and $(1,-1,-2)$ and let F be the sub-space of \mathbb{R}^{3} generated by the vectors $(3,7,0)$ and $(5,0,-7)$.
The sub-spaces E and F are equal.

$$
\left\{\begin{array}{c}
2 x+y=a \\
3 x-y=b \\
-x-2 y=c
\end{array}\right.
$$

This system is equivalent with the following system

$$
\left\{\begin{array}{l}
x+2 y=-c \\
-3 y=a+2 c \\
-7 y=b+3 c
\end{array}\right.
$$

This system is consistent if and only if $7 a-3 b+5 c=0$.

We remark that the vectors $(2,3,-1)$ and $(1,-1,-2)$ are solutions of the system, then $F \subset E$.
With the same method, the vectors $(2,3,-1)$ and $(1,-1,-2)$ are in the sub-space F. This proves that $E=F$.

Example

Is there $a, b \in \mathbb{R}$ such that the vector $v=(-2, a, b, 5)$ is in the sub-space of \mathbb{R}^{4} generated by the vectors $u=(1,-1,1,2)$ and $v=(-1,2,3,1)$.

Solution

The vector $v=(-2, a, b, 5)$ is in the sub-space of \mathbb{R}^{4} generated by the vectors $u=(1,-1,1,2)$ and $v=(-1,2,3,1)$ if the following linear system is consistent $A X=B$, where
$A=\left(\begin{array}{cc}1 & -1 \\ -1 & 2 \\ 1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{c}-2 \\ a \\ b \\ 5\end{array}\right)$.
This system is consistent if and only if $3=a-2=\frac{b+2}{4}$. Then $a=5$ and $b=10$.

Definition

A set of vectors v_{1}, \ldots, v_{n} in a vector space V are called linearly independent if the equation

$$
x_{1} v_{1}+\ldots,+x_{n} v_{n}=0
$$

has 0 as unique solution.

Example

The vectors $u=(1,1,-2), v=(1,-1,2)$ and $w=(3,0,2)$ are linearly independent in \mathbb{R}^{3}.

$$
x u+y v+z w=(0,0,0) \Longleftrightarrow\left\{\begin{array}{cl}
x+y+3 z & =0 \\
x-y & =0 \\
-2 x+2 y+2 z & =0
\end{array}\right.
$$

This system has 0 as unique solution.
The matrix of this system is $\left(\begin{array}{ccc}1 & 1 & 3 \\ 1 & -1 & 0 \\ -2 & 2 & 2\end{array}\right)$ and its determinant is
-4 .

Example

The set of vectors $\left\{P_{1}=1+x+x^{2}, P_{2}=2-x+3 x^{2}, P_{3}=x-x^{2}\right\}$ is linearly independent in \mathcal{P}_{2}.
$a P_{1}+b P_{2}+c P_{3}=0 \Longleftrightarrow(a+2 b)+(a-b+c) x+(a+3 b-c) x^{2}=$
$0 \Longleftrightarrow\left\{\begin{array}{cc}a+2 b & =0 \\ a-b+c & =0 \\ a+3 b-c & =0\end{array}\right.$

Definition

We say that the vectors v_{1}, \ldots, v_{n} in a vector space V are linearly dependent if they are not linearly independent.

Example

The vectors $u=(0,1,-2,1), v=(1,0,2,-1)$ and $w=(3,2,2,-1)$ are linearly dependent in \mathbb{R}^{4}.
$x u+y v+z w=(0,0,0,0) \Longleftrightarrow\left\{\begin{array}{cll}y+3 z & = & 0 \\ x+2 z & = & 0 \\ -2 x+2 y+2 z & = & 0 \\ x-y-z & = & 0\end{array}\right.$.
This system has infinite solutions.

The extended matrix of this system is $\left[\begin{array}{ccc|c}0 & 1 & 3 & 0 \\ 1 & 0 & 2 & 0 \\ -2 & 2 & 2 & 0 \\ 1 & -1 & -1 & 0\end{array}\right]$ and the
reduced row form of this matrix is : $\left[\begin{array}{lll|l}1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.

Theorem

Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of vectors in a vector space V, with $n \geq 2$.
The set S is linearly independent if and only if no vector in the set is a linear combination of the other vectors in the set.
The set S is linearly dependent if and only if one of the vectors in the set is a linear combination of the other vectors in the set.

Theorem

Let $S=\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{R}^{m}$ and A the matrix of type (m, n) such that its columns are the vectors of S.
The set S is linearly independent if and only if the homogeneous system $A X=0$ has 0 as unique solution.

Examples

(1) If A is a matrix of type (m, n) with $m<n$. Then the homogeneous system $A X=0$ has an infinite solutions.
(2) If $S=\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{R}^{m}$ with $m<n$, then the set S is linearly dependent.

Bases and Dimension

Definition

Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of vectors in a vector space V.
We say that S is a basis of the vector space V if :
(1) The set S generates the vector space V
(2) The set S is linearly independent.

Theorem

If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of the vector space V.
Any vector $v \in V$ can be written uniquely as a linear combination of vectors in the basis S.

Remark

Let $S=\left\{e_{1}, \ldots, e_{n}\right\}$ be the set of the vectors in the vector space \mathbb{R}^{n}, where
$e_{1}=(1,0, \ldots, 0), \ldots, e_{k}=(0, \ldots, 0,1,0, \ldots 0), \ldots, e_{n}=(0, \ldots, 0,1)$.
The set S is a basis of \mathbb{R}^{n} and is called the natural basis of \mathbb{R}^{n}.

Exercise

Prove that $S=\left\{1, X, \ldots, X^{n}\right\}$ is a basis of the vector space \mathcal{P}_{n}.

Example

$$
\text { Let } v_{1}=(\lambda, 1,1), v_{2}=(1, \lambda, 1) \text { and } v_{3}=(1,1, \lambda) \text {. }
$$

Find the values of $\lambda \in \mathbb{R}$ such that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of the vector space \mathbb{R}^{3}.

Solution

The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent if 0 the unique solution of the equation

$$
x v_{1}+y v_{2}+z v_{3}=0
$$

This is equivalent that the following matrix has an inverse :
$A=\left(\begin{array}{ccc}\lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda\end{array}\right)$.
Then $\lambda \notin\{-2,1\}$.
The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ generates the vector space \mathbb{R}^{n} because the linear system $A X=B$ is consistent for all $B \in \mathbb{R}^{n}$ since the matrix A has an inverse.

Theorem

Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of the vector space V and let $T=\left\{u_{1}, \ldots, u_{m}\right\}$ be a set of vectors.
If $m>n$, then T is linearly dependent.

Corollary

All bases of a finite dimensional vector space have the same number of elements.

Definition

If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of the vector space V then the number of vectors n of S is called the dimension of the vector space V and denoted by: $\operatorname{dim} V=n$.

Theorem

Let V is a vector space of dimension n. If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ in V.
Then
S is linearly independent if and only if S generates the vector space V and this is equivalent also with S is a basis of V.

Theorem

If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ generates the vector space V, then it contains a basis of the vector space V.

Remark

If $S=\left\{v_{1}, \ldots, v_{m}\right\} \subset \mathbb{R}^{n}$ is a set of vectors and F the vector sub-space generated by S. We have the following two algorithms to construct a basis of F.

First Algorithm

(1) Construct the matrix A such that its rows are the vectors of S
(2) The non zeros rows of any row echelon form of the matrix A are a basis of the vector space $F=\langle S\rangle$.

Second Algorithm

(1) Construct the matrix A such that its columns are the vectors of S
(2) Take any row echelon form C of the matrix A.
(3) Let $C_{k_{1}}, \ldots C_{k_{p}}$ be the columns which contain a leading number and $k_{1}<\ldots<k_{p}$. Then $\left\{v_{k_{1}}, \ldots, v_{k_{p}}\right\}$ is a basis of the vector space $F=\langle S\rangle$.

Theorem

(1) If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a generating system of the vector space V, then S contains a basis of V.
(2) If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent system of vectors in the vector space V, then there is a basis T of V which contain the set S.

Example

Let W be the sub-space of \mathbb{R}^{5} generated by the set of following vectors: $S=\left\{v_{1}=(1,0,2,-1,2), v_{2}=(2,0,4,-2,4), v_{3}=\right.$ $\left.(1,2,-1,2,0), v_{4}=(1,4,-4,5,-2).\right\}$
(1) Find a basis of the sub-space W in $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
(2) Find a basis of \mathbb{R}^{5} and contains $\left\{v_{1}, v_{3}\right\}$.

Solution

(1) Consider the matrix $A=\left(\begin{array}{cccc}1 & 2 & 1 & 1 \\ 0 & 0 & 2 & 4 \\ 2 & 4 & -1 & -4 \\ -1 & -2 & 2 & 5 \\ 2 & 4 & 0 & -2\end{array}\right)$ with columns the coordinates of the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ in the standard basis of \mathbb{R}^{5}.
The reduced row form the matrix A is $\left(\begin{array}{cccc}1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.
Then $\left\{v_{1}, v_{3}\right\}$ is a basis of the sub-space W.
(2) If $e_{1}=(1,0,0,0,0)$, $e_{2}=(0,1,0,0,0)$, $e_{3}=(0,0,1,0,0)$. Then $\left\{v_{1}, v_{3}, e_{1}, e_{2}, e_{3}\right\}$ is a basis of \mathbb{R}^{5} and contain $\left\{v_{1}, v_{3}\right\}$.

Example

Let $W=\left\{(x, y, z, t) \in \mathbb{R}^{4} ; 2 x+y+z=0, x-y+z=0\right\}$
(1) Prove that W is a sub-space of \mathbb{R}^{4}
(2) Find a basis of the sub-space W.

Solution

(1) $u=(x, y, z, t) \in W \Longleftrightarrow A X=0$, where

$$
A=\left(\begin{array}{cccc}
2 & 1 & 1 & 0 \\
1 & -1 & 1 & 0
\end{array}\right) \text { and } X=\left(\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right)
$$

Since the set of solutions of an homogeneous linear system is a vector sub-space, then W is vector sub-space of \mathbb{R}^{4}.

$$
\begin{aligned}
& \text { (1) } A X=0 \Longleftrightarrow\left\{\begin{array} { c }
{ 2 x + y + z = 0 } \\
{ x - y + z = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{c}
x=-2 y \\
z=3 y
\end{array}\right.\right. \\
& \quad \Longleftrightarrow X=y\left(\begin{array}{c}
-2 \\
1 \\
3 \\
0
\end{array}\right)+t\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Then $\{(-2,1,3,0),(0,0,0,1)\}$ is a basis of the vector sub-space W.

Coordinate System and Change of Bases

Definition

If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of the vector space V and if $v \in V$ such that

$$
v=x_{1} v_{1}+\ldots x_{n} v_{n}
$$

then $\left(x_{1}, \ldots x_{n}\right)$ are called the system of coordinates of the vector
v in the basis S. We denote $[v]_{S}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$

Theorem

If $B=\left\{v_{1}, \ldots, v_{n}\right\}$ and $C=\left\{u_{1}, \ldots, u_{n}\right\}$ are two bases of the vector space V. The matrix ${ }_{c} P_{B} \in M_{n}(\mathbb{R})$ with columns $\left[v_{1}\right]_{C}, \ldots,\left[v_{n}\right]_{C}$ is called the change of bases matrix from the basis B to the basis C. This matrix ${ }_{C} P_{B}$ is invertible, $C_{B} P_{B}^{-1}={ }_{B} P_{C}$ and

$$
[v]_{C}={ }_{C} P_{B}[v]_{B}, \quad \text { for all } v \in V
$$

${ }_{B} P_{C}$ is the change of bases matrix from the basis C to the basis B.)

Example

Let $B=\left\{v_{1}=(0,1,1), v_{2}=(1,0,-2), v_{3}=(1,1,0)\right\}$ be a basis of the vector space \mathbb{R}^{3} and let $C=\left\{u_{1}=(1,0,0), u_{2}=(0,1,0), u_{3}=\right.$ $(0,0,1)\}$ be the standard basis of \mathbb{R}^{3}.
We have ${ }_{C} P_{B}=\left(\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & -2 & 0\end{array}\right)$ and ${ }_{B} P_{C}=\left(\begin{array}{ccc}-2 & 2 & -1 \\ -1 & 1 & -1 \\ 2 & -1 & 1\end{array}\right)$. If

$$
[v]_{C}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \text {, then }[v]_{B}={ }_{B} P_{C}[v]_{C}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) .
$$

Example

Consider B and C two bases of vector space V such that the matrix

$$
{ }_{C} P_{B}=\left(\begin{array}{ccc}
1 & -1 & -2 \\
0 & -1 & 1 \\
1 & 2 & -2
\end{array}\right) \text {. Let } u \text { be a vector in } V \text { such that }[u]_{C}=
$$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text {, then }[u]_{B}={ }_{B} P_{C}[X]_{C}={ }_{C} P_{B}^{-1}[X]_{C}=\frac{1}{3}\left(\begin{array}{c}
6 y+3 z \\
-x+z \\
-x+3 y+z
\end{array}\right) \text {. }
$$

Definition

Let A be a matrix of type (m, n).
The vector sub-space of \mathbb{R}^{n} spanned by the rows of the matrix A is called the row vector space of the matrix A and denoted by: $\operatorname{row}(A)$.
The vector sub-space of \mathbb{R}^{m} spanned by the columns of the matrix A is called the column vector space of the matrix A and denoted by: $\operatorname{col}(A)$.

Theorem

Let A be a matrix and B a matrix which is a result of some row operations on the matrix A, then $\operatorname{row}(A)=\operatorname{row}(B)$.

Theorem

Let A be a matrix and B any row echelon form of the matrix A. Then the set of non zero rows of the matrix B is a basis of the row vector space of A.

Definition

The dimension of the row vector space of a matrix A is called the rank of A.

$$
\operatorname{rank}(A)=\operatorname{dim}(\operatorname{row}(A))
$$

Remark

The rank of a matrix A is the numbers of leading numbers in any row echelon form of the matrix A.

Theorem

For any matrix A :

$$
\operatorname{rank}(A)=\operatorname{dim}(\operatorname{row}(A))=\operatorname{dim}(\operatorname{col}(A))
$$

Corollary

For any matrix A :

$$
\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)
$$

Corollary

If A is a matrix of type (m, n) and P is any invertible matrix of type m and Q an invertible matrix of type n, then

$$
\operatorname{rank}(A)=\operatorname{rank}(P A Q)
$$

Proof

There exist some elementary matrices E_{1}, \ldots, E_{p} of order m such that $P=E_{1} \ldots E_{p}$.
We know that if E is a elementary matrix which corresponds to an elementary row operation R, then $E A$ is the result of this elementary row operation R on the matrix A. Hence

$$
\operatorname{rank}(A)=\operatorname{rank}(P A)
$$

Also $\operatorname{rank}(P A Q)=\operatorname{rank}(P A Q)^{T}=\operatorname{rank}\left(Q^{T} A^{T} P^{T}\right)=\operatorname{rank}\left(A^{T} P^{T}\right)=$ $\operatorname{rank}(P A)=\operatorname{rank}(A)$.

Theorem

If A is a matrix of type (m, n). We have the equivalence of the following statements:
(1) The homogeneous system $A X=0$ has 0 as unique solution.
(2) The columns of the matrix A are linearly independent.
(3) $\operatorname{rank}(A)=n$.
(9) The matrix $A^{T} A$ has an inverse.

Theorem

Let A be a matrix of type (m, n). We have the equivalence of the following statements
(1) The system $A X=B$ is consistent for all $B \in \mathbb{R}^{m}$.
(2) The columns of the matrix A generates the vector space \mathbb{R}^{m}.
(3) $\operatorname{rank}(A)=m$.
(9) The matrix $A A^{T}$ has an inverse.

Definition

Let A be a matrix of type (m, n). The vector sub-space $\left\{X \in \mathbb{R}^{n} ; A X=0\right\}$ is called the nullspace of the matrix A and denoted by: $N(A)$. The dimension of $N(A)$ is denoted by nullity (A).
Also the vector sub-space $\left\{A X ; X \in \mathbb{R}^{n}\right\}$ is called the image (or the range) of the matrix A and denoted by: $\operatorname{Im}(A)$.

Theorem

For any matrix $A, \operatorname{Im}(A)=\operatorname{col}(A)$.

Rank-Nullity Theorem

For any matrix A, $\operatorname{nullity}(A)+\operatorname{rank}(A)=n$.

Finding bases for the null space, row space and column space of a matrix

Given a matrix A of type (m, n)
(1) Reduce the matrix A to the reduced row echelon form R.
(2) Solve the system $R X=0$. Find a basis for the solutions space. The same basis for the solution space of $R X=0$ is a basis for the null space of A.
(3) Consider the non-zero rows of R. They form a basis for the row space of R. The same basis for the row space of R is a basis for the row space of A.
(9) Take the columns of R with leading $1^{\text {s }}$. They form a basis for the column space of R. The corresponding column vectors in A form a basis for the column space of A.

Example

Let the matrix $A=\left(\begin{array}{cccc}1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 3 \\ 2 & 3 & 0 & 1 \\ 1 & 1 & 1 & 2\end{array}\right)$
(1) Find a basis of the vector space $N(A)$.
(2) Find a basis of the vector space $\operatorname{Col}(A)$.
(3) Find the rank of the matrix A.

Solution

The reduced row form the matrix A is $\left(\begin{array}{cccc}1 & 0 & 3 & 5 \\ 0 & 1 & -2 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.
(1) $(-3,2,1,0),(-5,3,0,1)$ is basis of the vector space $N(A)$..
(2) $(0,1,2,1),(-1,2,3,1)$ is a basis of the vector space $\operatorname{Col}(A)$.
(3) The rank of the matrix A is 2 .

Example

Let $e_{1}=(0,1,-2,1), e_{2}=(1,0,2,-1), e_{3}=(3,2,2,-1), e_{4}=$ $(0,0,1,0)$ and $e_{5}=(0,0,0,1)$ vectors in \mathbb{R}^{4}.
Is the following statements are true?
(1) $\operatorname{Vect}\left\{e_{1}, e_{2}, e_{3}\right\}=\operatorname{Vect}\{(1,1,0,0),(-1,1,-4,2)\}$.
(2) $(1,1,0,0) \in \operatorname{Vect}\left\{e_{1}, e_{2}\right\} \cap \operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\}$.
(3) $\operatorname{Vect}\left\{e_{1}, e_{2}\right\}+\operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\}=\mathbb{R}^{4}$.

Solution

(1) Let the matrix A which rows are the vectors e_{1}, e_{2}, e_{3}. The vector space Vect $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the row vector space of the matrix A.
The reduced row form of the matrix A is
$A_{1}=\left(\begin{array}{cccc}1 & 0 & 2 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$.
Then $\operatorname{dimVect}\left\{e_{1}, e_{2}, e_{3}\right\}=2$.
We have $\operatorname{Vect}\left\{e_{1}, e_{2}, e_{3}\right\}=\operatorname{Vect}\{(1,1,0,0),(-1,1,-4,2)\}$ if and only if the rank of the following matrix B is 2
$B=\left(\begin{array}{cccc}1 & 0 & 2 & -1 \\ 0 & 1 & -2 & 1 \\ -1 & 1 & -4 & 2 \\ 1 & 1 & 0 & 0\end{array}\right)$.
The reduced row form of the matrix B is $A_{2}=\left(\begin{array}{cccc}1 & 0 & 2 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.
Then
$\operatorname{Vect}\left\{e_{1}, e_{2}, e_{3}\right\}=\operatorname{Vect}\{(1,1,0,0),(-1,1,-4,2)\}$.
(2) $(1,1,0,0)=e_{1}+e_{2}, 2(1,1,0,0)=e_{3}-e_{2}$. Then $(1,1,0,0) \in \operatorname{Vect}\left\{e_{1}, e_{2}\right\} \cap \operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\}$.
(3) $(1,1,0,0) \in \operatorname{Vect}\left\{e_{1}, e_{2}\right\} \cap \operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\}$ and $e_{2} \in \operatorname{Vect}\left\{e_{1}, e_{2}\right\} \cap \operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\}$. Then $\operatorname{dimVect}\left\{e_{1}, e_{2}\right\} \cap \operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\}=2$ and

$$
\operatorname{dim} \operatorname{Vect}\left\{e_{1}, e_{2}\right\}+\operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\} \leq 3
$$

Then $\operatorname{Vect}\left\{e_{1}, e_{2}\right\}+\operatorname{Vect}\left\{e_{2}, e_{3}, e_{4}\right\} \neq \mathbb{R}^{4}$.

