

Objectives

-What are control structures
-Relational Operators
-Logical operators
-Boolean expressions
-Conditional (Decision) statements
-Loop statements

What are Control Structures

- Without control structures, a computer would evaluate the instructions in a program step-by-step
- Control structures allow:

Defining which instructions are evaluated
Changing the order in which instructions are evaluated and Controlling the "flow" of the program

- Control structures include:

Block statements (anything contained within curly brackets) Decision statements
Loops

Use of relational Operators

left_operand relational_ operator right_operand

counter < 5
counter <= maximum

- Relational operators can be combined with arithmetic operators:
$5+3<4$
\rightarrow false because 8 is not <4
myNumber \% $2==1$
\rightarrow false if myNumber is odd
\rightarrow true otherwise
- Relational operators are always performed last!!

Logical Operators

$\boldsymbol{\|} \mid$	T	F
T	T	T
F	T	F

	T	F
$!$	F	T

Page 6
Dr. S. GANNOUNI \& Dr. A. TOUIR
Introduction to OOP

Boolean Expressions

- Boolean expression is an expression that is evaluated to a boolean value.
- Atomic Boolean expression uses one and only one of the relational operators.
myBalance <= yourBalance
- Complex Boolean expressions may be defined by linking other Boolean expressions using logical operators.
- (myBalance <= yourBalance) \&\& (yourAge > 20)
(! (myBalance <= yourBalance)) !! (yourAge <=20)
- Boolean expressions may be assigned to boolean variables. boolean isHeOlder $=($ myAge $<$ hisAge $)$;

