Linear Transformations

Mongi BLEL
King Saud University

February 12, 2021

Table of contents

(1) Definition of Linear Transformation
(2) Kernel and Image of a Linear Transformation
(3) Matrix of Linear Transformation and the Change of Basis

Definition of Linear Transformation

Definition

Let V and W be two vector spaces. A function $T: V \longrightarrow W$ is called a linear transformation from V to W if for all $u, v \in V$, $k \in \mathbb{R}$
(1) $T(u+v)=T(u)+T(v)$, (additivity).
(2) $T(k u)=k T(u)$, (homogeneity).

If $V=W$, we call a linear transformation from V to V a linear operator.

(Basic properties of linear transformations)

If $T: V \longrightarrow W$ is a linear transformation then
(1) $T(0)=0$.
(2) $T(-u)=-T(u)$.
(3) $T(u-v)=T(u)-T(v)$.

Example

(1) $T: M_{m, n}(\mathbb{R}) \longrightarrow M_{n, m}(\mathbb{R})$ defined by $T(A)=A^{T}$;
(2) $T: \mathcal{P}_{2}(\mathbb{R}) \longrightarrow \mathcal{P}_{3}(\mathbb{R})$ defined by $T\left(a+b X+c X^{2}\right)=(a+b-2 c)+c X+(a+c) X^{2}+(a+b) X^{3} ;$
(3) $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ defined by $T(x, y)=(x+3 y, 2 x-y, x+5 y)$;
(9) $T: \mathcal{P}_{2}(\mathbb{R}) \longrightarrow \mathbb{R}^{3}$ defined by $T\left(a+b X+c X^{2}\right)=(a+3 b-c, b-c, 2 a-b+3 c)$;

Example

The following functions are not linear transformations
(1) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, defined by $T(x, y, z)=(x y, z)$ because $T(2,2,0)=(4,0) \neq 2 T(1,1,0)=(2,0)$.
(2) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, defined by $T(x, y, z)=(x+y-3 z, z+y-1)$ because $T(0) \neq 0$;
(3) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined by $T(x, y, z)=\left(x+y, z+y, x^{2}\right)$ because $T(2,0,0)=(2,0,4) \neq 2 T(1,0,0)=(2,0,2)$.
(1) $T: M_{n}(\mathbb{R}) \longrightarrow \mathbb{R}$ defined by $T(A)=\operatorname{det} A$ because $\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B$ in general.

Theorem

If $T: V \longrightarrow W$ is a mapping, then T is a linear transformation if and only if

$$
T(\alpha u+\beta v)=\alpha T(u)+\beta T(v) \quad \forall u, v \in V, \alpha, \beta \in \mathbb{R}
$$

Theorem

If $T: V \longrightarrow W$ is a linear transformation, then

$$
T\left(\alpha_{1} u_{1}+\ldots+\alpha_{n} u_{n}\right)=\alpha_{1} T\left(u_{1}\right)+\ldots+\alpha_{n} T\left(u_{n}\right),
$$

for all $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ and $u_{1}, \ldots, u_{n} \in V$.

Remarks

(1) If $S=\left\{u_{1}, \ldots u_{n}\right\}$ is a basis of the vector space V. A linear transformation $T: V \longrightarrow W$ is well defined if $T\left(u_{1}\right), \ldots, T\left(u_{n}\right)$ are defined.
(2) The unique linear transformations $T: \mathbb{R} \longrightarrow \mathbb{R}$ are $T(x)=a x, a \in \mathbb{R}$.
(3) The unique linear transformations $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ are $T(x, y)=a x+b y, a, b \in \mathbb{R}$.

Theorem

If $A \in M_{m, n}(\mathbb{R})$, then the mapping $T_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ defined by: $T_{A}(X)=A X$ for all $X \in \mathbb{R}^{n}$ is a linear transformation and called the linear transformation associated to the matrix A.

Theorem

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation and let $B=\left(e_{1}, \ldots, e_{n}\right)$ be a basis of the vector space \mathbb{R}^{n} and $C=\left(u_{1}, \ldots, u_{m}\right)$ a basis of the vector space \mathbb{R}^{m}. Then $T=T_{A}$, where $A=\in M_{m, n}(\mathbb{R})$ with columns $\left[T\left(e_{1}\right)\right]_{C}, \ldots,\left[T\left(e_{n}\right)\right] c$. The matrix A is called the matrix of the linear transformation T with respect to the basis B and C.

Theorem

Let V, W be two vector spaces and $S=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of the vector space V and $\left\{w_{1}, \ldots, w_{n}\right\}$ a set of vectors in the vector space W.
There is a unique linear transformation $T: V \longrightarrow W$ such that $T\left(v_{j}\right)=w_{j}$ for all $1 \leq j \leq n$.

Definition

Let $T: V \longrightarrow W$ be a linear transformation. The set $\{v \in V ; T(v)=0\}$ is called the kernel of the linear transformation T and denoted by: $\operatorname{ker}(T)$.
The set $\{T(v) ; v \in V\}$ is called the range or the image of the linear transformation T denoted by: $\operatorname{Im}(T)$.

Theorem

If $T: V \longrightarrow W$ is a linear transformation, then $\operatorname{ker}(\mathrm{T})$ is a vector sub-space of V and $\operatorname{Im}(\mathrm{T})$ is a vector sub-space of W.

Definition

If $T: V \longrightarrow W$ is a linear transformation then dimension the vector space $\operatorname{ker}(\mathrm{T})$ is called the nullity of the linear transformation T and denoted by: (nullity (T)).
The dimension of the vector space $\operatorname{Im}(\mathrm{T})$ is called the rank of the linear transformation T and denoted by: $(\operatorname{rank}(T))$.

Example

If $A \in M_{m, n}(\mathbb{R})$ and $T_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ the linear transformation defined by: $T_{A}(X)=A X$, then $\operatorname{rank}(T)=\operatorname{rank} A$, and $\operatorname{Im}(T)=$ $\operatorname{col} A$.

Example

Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T(x, y, z)=$ $(2 x-y+3 z, x-2 y+z)$.
$(x, y, z) \in \operatorname{ker}(T) \Longleftrightarrow\left\{\begin{array}{c}2 x-y+3 z=0 \\ x-2 y+z=0\end{array}\right.$
The extended matrix of this linear system is: $\left[\begin{array}{lll|l}2 & -1 & 3 & 0 \\ 1 & -2 & 1 & 0\end{array}\right]$.
Then $(x, y, z) \in \operatorname{ker}(T) \Longleftrightarrow x=5 y, z=-3 y$. Hence $\operatorname{ker}(T)=\operatorname{Vect}\{(5,1,-3)\}$.
As $T(x, y, z)=x(2,1)+y(-1,-2)+z(3,1)$, then
$\operatorname{Im}(T)=\operatorname{Vect}\{(2,1),(-1,-2),(3,1)\}=\operatorname{Vect}\{(2,1),(-1,-2)\}$.

Theorem

If $T: V \longrightarrow W$ is a linear transformation and $\left\{v_{1}, \ldots v_{n}\right\}$ is a basis of the vector space V, then the set $\left\{T\left(v_{1}\right), \ldots T\left(v_{n}\right)\right\}$ generates the vector space $\operatorname{Im}(T)$.

The Dimension Theorem of the Linear Transformations

If $T: V \longrightarrow W$ is a linear transformation and if $\operatorname{dim} V=n$, then

$$
\operatorname{nullity}(T)+(\operatorname{rank}(T)=n
$$

i.e.

$$
\operatorname{dimker}(T)+\operatorname{dim} \operatorname{Im}(T)=n
$$

Definition

If $T: V \longrightarrow W$ is a linear transformation,
(1) T is called injective if $T(u)=T(v) \Rightarrow u=v$, for all $u, v \in V$.
(2) T is called surjective if $\operatorname{Im}(T)=W$.

Theorem

If $T: V \longrightarrow W$ is a linear transformation. The linear transformation T is injective if and only if $\operatorname{ker}(T)=\{0\}$.

Corollary

If $T: V \longrightarrow W$ is a linear transformation and $\operatorname{dim} V=\operatorname{dim} W=n$. Then the linear transformation T is injective if and only if T is surjective.

Example

Consider the linear transformation $T: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ defined by:

$$
T(x, y, z, t)=(x-y, 2 z+3 t, y+4 z+3 t, x+6 z+6 t)
$$

$(x, y, z, t) \in \operatorname{Ker}(T) \Longleftrightarrow x=y=3 t=-2 z$. Then $(6,6,-3,2)$
is a basis the kernel of T.
The range of T is the column space of the matrix

$$
\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & 2 & 3 \\
0 & 1 & 4 & 3 \\
1 & 0 & 6 & 6
\end{array}\right)
$$

The row reduced form of this matrix is

$$
\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & 4 & 3 \\
0 & 0 & 1 & \frac{3}{2} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Then $\{(1,0,0,1),(-1,0,1,0),(0,2,4,6)\}$ is a basis of the range of T.

Example

Let V, W be two vector spaces and $T: V \longrightarrow W$ a linear transformation. If T is injective and $S=\left\{u_{1}, \ldots, u_{n}\right\}$ is a set of linearly independent, then the set $\left\{T\left(u_{1}\right), \ldots, T\left(u_{n}\right)\right\}$ is linearly independent.

$$
\begin{aligned}
x_{1} T\left(u_{1}\right)+\ldots+x_{n} T\left(u_{n}\right)=0 & \Longleftrightarrow T\left(x_{1} u_{1}+\ldots+x_{n} u_{n}\right)=0 \\
& \Longleftrightarrow x_{1} u_{1}+\ldots+x_{n} u_{n}=0
\end{aligned}
$$

since T is injective and the set S is linearly independent, then $x_{1}=$ $\ldots=x_{n}=0$.

Definition

Let $T: V \longrightarrow W$ be a linear transformation, $B=\left(u_{1}, \ldots, u_{n}\right)$ be a basis of V and $C=\left(v_{1}, \ldots, v_{m}\right)$ a basis of W. The matrix $[T]_{B}^{C}$ with columns $\left[T\left(u_{1}\right)\right]_{C}, \ldots,\left[T\left(u_{n}\right)\right]_{C}$ is called the matrix of the linear transformation T with respect to the basis B and the basis
C. This matrix satisfies

$$
[T(v)]_{C}=[T]_{B}^{C}[v]_{B} ; \quad \forall v \in V .
$$

If $V=W$ and $B=C$ we write the matrix $[T]_{C}$ instead of $[T]_{B}^{C}$.

Example

Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be the linear transformation defined by the following: $T(x, y, z)=(2 x-y+3 z, x-2 y+z)$. The matrix of T with respect to the standard basis of \mathbb{R}^{3} is: $\left(\begin{array}{ccc}2 & -1 & 3 \\ 1 & -2 & 1\end{array}\right)$

Example

Consider the linear transformation of \mathbb{R}^{3} defined by: $T_{1}((1,0,0))=$ $(1,1,1), T_{1}((0,1,0))=(1,2,2), T_{1}((0,0,1))=(1,2,3)$. The matrix of T with respect to the standard basis of \mathbb{R}^{3} is $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right)$ and $T_{1}(x, y, z)=(x+y+z, x+2 y+2 z, x+2 y+3 z)$.

Theorem

If $T: V \longrightarrow V$ is a linear transformation and B and C are basis of the vector space V, then

$$
[T]_{B}={ }_{B} P_{C}[T]_{C} C P_{B} .
$$

Example

Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be the linear transformation such that its matrix with respect to the standard basis C of the vector space \mathbb{R}^{3} is

$$
[T]_{C}=\left(\begin{array}{ccc}
-3 & 2 & 2 \\
-5 & 4 & 2 \\
1 & -1 & 1
\end{array}\right)
$$

Consider the basis $B=\{u=(1,1,1), v=(1,1,0), w=(0,1,-1)\}$ of \mathbb{R}^{3}.
${ }_{C} P_{B}=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & -1\end{array}\right)$. Then the matrix of T with respect to the
basis S and the basis B is

$$
{ }_{B} P_{C}={ }_{S} P_{B}^{-1}=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
2 & -1 & -1 \\
-1 & 1 & 0
\end{array}\right)
$$

and

$$
[T]_{B}={ }_{B} P_{C}[T]_{C C} P_{B}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

Example

Consider the linear transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ defined by: $T(x, y, z)=(3 x+2 y, 3 y+2 z, 9 x-4 z)$.
The matrix of the linear transformation T is $A=\left(\begin{array}{ccc}3 & 2 & 0 \\ 0 & 3 & 2 \\ 9 & 0 & -4\end{array}\right)$.
The extended matrix of the linear system $A X=0$ is: $\left[\begin{array}{ccc|c}3 & 2 & 0 & 0 \\ 0 & 3 & 2 & 0 \\ 9 & 0 & -4 & 0\end{array}\right]$.
This matrix is equivalent to the matrix $\left[\begin{array}{lll|l}3 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$.
Then $\operatorname{ker}(T)=\{0\}$ and the range of T is \mathbb{R}^{3}.

Consider the basis $S=\{(0,0,1),(0,1,1),(1,1,1)\}$ of $r b^{3}$. The matrix the linear transformation T with respect to the basis S
is $P^{-1} A P=\left(\begin{array}{ccc}-6 & -9 & 0 \\ 2 & 3 & 0 \\ 0 & 2 & 5\end{array}\right)$, with $P=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ and
$P^{-1}=\left(\begin{array}{ccc}0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$.

Example

Consider $u_{1}=\frac{1}{3}(1,2,2), u_{2}=\frac{1}{3}(2,1,-2)$, $u_{3}=\frac{1}{3}(2,-2,1)$.
As the determinant $\left|\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right|=-27$, then the $\operatorname{set}\left\{u_{1}, u_{2}, u_{3}\right\}$ is a basis of \mathbb{R}^{3}. Also, we have $\left\|u_{1}\right\|=\left\|u_{2}\right\|=\left\|u_{3}\right\|=1$ and $\left\langle u_{1}, u_{2}\right\rangle=\left\langle u_{1}, u_{3}\right\rangle=\left\langle u_{2}, u_{3}\right\rangle=0$, then the set $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthonormal basis of \mathbb{R}^{3}.

Define the linear transformation $T: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ by: $T\left(e_{1}\right)=u_{1}$, $T\left(e_{2}\right)=u_{2}$ and $T\left(e_{3}\right)=u_{3}$, where $\left\{e_{1}, e_{2}, e_{3}\right\}$ the standard basis of \mathbb{R}^{3}. The matrix of the linear transformation T with respect to the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ is

$$
P=\frac{1}{3}\left(\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right)
$$

and

$$
T(x, y, z)=\frac{1}{3}(x+2 y+2 z, 2 x+y-2 z, 2 x-2 y+z)
$$

Define the linear transformation $S: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ by: $S(x, y, z)=(-x+2 z, y+2 z, 2 x+2 y)$. The matrix of S with respect to the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ is $A=\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 0\end{array}\right)$. The matrix of S with respect to basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ is $B=P^{-1} A P$. As $P^{-1}=P^{T}=P$, hence
$B=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0\end{array}\right), \quad B^{n}=3^{n}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & 0\end{array}\right) \quad$ and $\quad A^{n}=P B^{n} P$.
If $u=x u_{1}+y u_{2}+z u_{3}$, then $S(u)=3 x u_{1}-3 u_{2}$.

Example

Let the matrix $A=\left(\begin{array}{ccc}2 & -2 & 3 \\ -2 & 2 & 3 \\ 3 & 3 & -3\end{array}\right)$. We define the linear transformation $T: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ defined by the matrix A with respect to the standard basis $\left(e_{1}, e_{2}, e_{3}\right)$ of the vector space \mathbb{R}^{3}.
(1) Find $T(x, y, z)$.
(2) Find an orthogonal basis $\left(u_{1}, u_{2}, u_{3}\right)$ of the vector space \mathbb{R}^{3} such that $T\left(u_{1}\right)=3 u_{1}$ and $T\left(u_{2}\right)=4 u_{2}$.
(0) Find the matrix of the linear transformation T with respect to the basis $\left(u_{1}, u_{2}, u_{3}\right)$.
(1) We define the linear transformation $S: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ by the following: $S\left(e_{1}\right)=u_{1}, S\left(e_{2}\right)=u_{2}$ and $S\left(e_{3}\right)=u_{3}$.
Find the matrix P of the linear transformation S with respect to standard basis.
(1) Prove that the matrix P has an inverse and find P^{-1}.
(2) Let the linear transformation U defined by the matrix P^{-1} with respect to the standard basis.
Find $U\left(u_{k}\right)$ for all $k=1,2,3$.
(3) Let $F=U \circ T \circ S$.

Find $F\left(e_{1}\right), F\left(e_{2}\right), F\left(e_{3}\right)$.
Find the matrix of the linear transformation F and conclude the value A^{n} for all $n \in \mathbb{N}$.

Solution

(1)

$$
T(x, y, z)=(2 x-2 y+3 z,-2 x+2 y+3 z, 3 x+3 y-3 z)
$$

(2) Let $u=(x, y, z)$.

$$
T(u)=3 u \Longleftrightarrow\left\{\begin{array}{c}
-x-2 y+3 z=0 \\
-2 x-y+3 z \\
3 x+3 y-6 z=0
\end{array} \Longleftrightarrow x=y=z\right.
$$

We take $u_{1}=(1,1,1)$.

$$
T(u)=4 u \Longleftrightarrow\left\{\begin{array} { c }
{ - 2 x - 2 y + 3 z = 0 } \\
{ - 2 x - 2 y + 3 z } \\
{ 3 x + 3 y - 7 z = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{c}
x=-y \\
z=0
\end{array}\right.\right.
$$

(1) the matrix P has an inverse, then $\left(u_{1}, u_{2}, u_{3}\right)$ is a basis .
$P^{-1}=\frac{1}{6}\left(\begin{array}{ccc}2 & 2 & 2 \\ 3 & -3 & 0 \\ 1 & 1 & -2\end{array}\right)$.
(2) $U\left(u_{1}\right)=(1,0,0), U\left(u_{2}\right)=(0,1,0), U\left(u_{3}\right)=(0,0,1)$.
(3) $F=U \circ T \circ S$.
$F\left(e_{1}\right)=U \circ T\left(u_{1}\right)=3 U\left(u_{1}\right)=3(1,0,0)$,
$F\left(e_{2}\right)=U \circ T\left(u_{2}\right)=4 U\left(u_{2}\right)=4(0,1,0)$,
$F\left(e_{3}\right)=U \circ T\left(u_{3}\right)=-6 U\left(u_{3}\right)=-6(0,0,1)$.
The matrix of the linear transformation F is

$$
\begin{gathered}
D=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -6
\end{array}\right) . \\
A^{n}=P D^{n} P^{-1} .
\end{gathered}
$$

