Diagonalization of Matrix

Mongi BLEL
King Saud University
February 12, 2021

Table of contents

(1) Eigenvalue and Eigenvector
(2) Diagonalization

Eigenvalue and Eigenvector

Definition

If $A \in M_{n}(\mathbb{R})$ and $\lambda \in \mathbb{R}$.
λ is called an eigenvalue of the matrix A if there is $X \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
A X=\lambda X
$$

The corresponding nonzero X are called eigenvectors of the matrix A.

Example

If A is the matrix $A=\left(\begin{array}{cc}1 & 1 \\ -3 & 5\end{array}\right)$, then the vector $X=\binom{1}{1}$ is an eigenvector for A because $A X=2 X$. The corresponding eigenvalue is $\lambda=2$.
Remark Note that if $A X=\lambda$ and c is any real number, then $A(c X)=c A X=c(\lambda X)=\lambda(c X)$. Then, if X is an eigenvector of A, then so is $c X$ for any nonzero number c.

The eigenvalue equation can be rewritten as $(A-\lambda I) X=0$. The eigenvalues of A are the values of λ for which the above equation has nontrivial solutions. There are nontrivial solutions if and only if $\operatorname{det}(A-\lambda I)=0$.

Theorem

If $A \in M_{n}(\mathbb{R})$ and $\lambda \in \mathbb{R}$. λ is an eigenvalue the matrix A if and only if $\operatorname{det}(A-\lambda I)=0$.

Definition

If $A \in M_{n}(\mathbb{R})$, the polynomial

$$
q_{A}(\lambda)=|A-\lambda I|
$$

is called the characteristic polynomial of the matrix A and the equation $q_{A}(\lambda)=0$ is called the characteristic equation of A. The eigenvalues of A are the roots of its characteristic polynomial.

Example

Find all of the eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right)$.
Compute the characteristic polynomial $q_{A}(\lambda)=\left|\begin{array}{cc}1-\lambda & 3 \\ 2 & 2-\lambda\end{array}\right|=$
$(\lambda+1)(\lambda-4)$. The roots of $q_{A}(\lambda)$ are -1 and 4. $X_{1}=\binom{3}{-2}$ is an eigenvector for A with respect to the eigenvalue -1 and $X_{2}=\binom{1}{1}$ is an eigenvector for A with respect to the eigenvalue 4.

Example

Find the eigenvalues of the following matrix
$A=\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1\end{array}\right), A=\left(\begin{array}{lll}5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2\end{array}\right), A=\left(\begin{array}{ccc}-1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3\end{array}\right)$.

Definition

If A is a matrix with characteristic polynomial $p()$,
If A is a matrix with characteristic polynomial $q_{A}(\lambda)$, the multiplicity of a root λ of q_{A} is called the algebraic multiplicity of the eigenvalue λ.
Example Let $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & -1 \\ 1 & 0 & 2\end{array}\right)$. The characteristic function of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{ccc}
\lambda-1 & 0 & 0 \\
1 & \lambda-1 & 1 \\
-1 & 0 & \lambda-2
\end{array}\right|=(\lambda-1)^{2}(2-\lambda)
$$

The eigenvalue $\lambda=1$ has algebraic multiplicity 2 , while $\lambda=2$ has algebraic multiplicity 1.

Definition

Let $A \in M_{n}(\mathbb{R})$ and λ an eigenvalue of the matrix A. The set

$$
E_{\lambda}=\left\{X \in \mathbb{R}^{n} ; A X=\lambda X\right\}
$$

is called the eigenspace of A associated to the eigenvalue λ.

Remark

If λ is an eigenvalue of the matrix $A \in M_{n}(\mathbb{R})$, then $E_{\lambda}=\left\{X \in \mathbb{R}^{n} ; A X=\lambda X\right\}$ is vector sub-space of \mathbb{R}^{n}. Its dimension is called the the geometric multiplicity of λ.

The geometric multiplicity of λ is the number of linearly independent eigenvectors corresponding to λ.

Theorem

The geometric multiplicity of an eigenvalue is less than or equal to its algebraic multiplicity.

Definition

A matrix that has an eigenvalue whose geometric multiplicity is less than its algebraic multiplicity is called defective.

Theorem

If $A \in M_{n}(\mathbb{R})$ and X_{1}, \ldots, X_{m} are eigenvectors for different eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$, then X_{1}, \ldots, X_{m} are linearly independent.

Proof

The proof is by induction. The result is true for $m=1$. Assume the result true for m and let X_{1}, \ldots, X_{m+1} be eigenvectors for different eigenvalues $\lambda_{1}, \ldots, \lambda_{m+1}$.

If $a_{1} X_{1}+\ldots a_{m} X_{m}+a_{m+1} X_{m+1}=0$, then $a_{1} \lambda_{1} X_{1}+\ldots a_{m} \lambda_{m} X_{m}+a_{m+1} \lambda_{m+1} X_{m+1}=0$. Also we have $a_{1} \lambda_{m+1} X_{1}+\ldots a_{m} \lambda_{m+1} X_{m}+a_{m+1} \lambda_{m+1} X_{m+1}=0$. Then $a_{1}\left(\lambda_{1}-\lambda_{m+1}\right) X_{1}+\ldots+a_{m}\left(\lambda_{m}-\lambda_{m+1}\right) X_{m}=0$. Since $\left(\lambda_{j}-\lambda_{m+1}\right) \neq 0$ for all $j=1, \ldots m$, then $a_{1}=\ldots=a_{m}=0$ and so $a_{m+1}=0$.

Definition

A matrix $A \in M_{n}(\mathbb{R})$ is called diagonalizable if there exists an invertible matrix $P \in M_{n}(\mathbb{R})$ such that the matrix $P^{-1} A P$ is diagonal.

Remark

If X_{1}, \ldots, X_{n} are the columns of the matrix P, then the columns of the matrix $A P$ are: $A X_{1}, \ldots, A X_{n}$.
Moreover if

$$
D=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & \ldots & \ldots & 0 \\
0 & \lambda_{2} & 0 & \ldots & \vdots \\
\vdots & 0 & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ldots & \ddots & 0 \\
0 & \ldots & \ldots & 0 & \lambda_{n}
\end{array}\right)
$$

then the columns of the matrix $P D$ are: $\lambda_{1} X_{1}, \ldots, \lambda_{n} X_{n}$.
Then $P^{-1} A P=D \Longleftrightarrow P D=A P$ and the columns of the matrix P form a basis of \mathbb{R}^{n} of eigenvectors of the matrix A.

Theorem

A matrix $A \in M_{n}(\mathbb{R})$ is diagonalizable if and only if it has n eigenvectors linearly independent. These vectors form a basis of the vector space \mathbb{R}^{n}.

Examples

Prove that the following matrices are diagonalizable and find an invertible matrix $P \in M_{n}(\mathbb{R})$ such that the matrix $P^{-1} A P$ is diagonal and find A^{15}.

$$
A=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right), A=\left(\begin{array}{lll}
5 & 4 & 2 \\
4 & 5 & 2 \\
2 & 2 & 2
\end{array}\right), A=\left(\begin{array}{ccc}
-1 & 4 & -2 \\
-3 & 4 & 0 \\
-3 & 1 & 3
\end{array}\right)
$$

Theorem

If $A \in M_{n}(\mathbb{R})$ and the characteristic function

$$
q_{A}(\lambda)=C\left(\lambda-\lambda_{1}\right)^{m_{1}} \ldots\left(\lambda-\lambda_{p}\right)^{m_{p}}
$$

then A is diagonalizable if and only if the algebraic and geometric multiplicities are equal.

Remark

For example, if a matrix $A \in M_{n}(\mathbb{R})$ and has n different eigenvalues, then A is diagonalizable.

Example

Consider the matrix $A=\left(\begin{array}{cc}5 & 4 \\ -4 & -3\end{array}\right)$. The characteristic polynomial of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{cc}
5-\lambda & 4 \\
-4 & -3-\lambda
\end{array}\right|=(1-\lambda)^{2} .
$$

Then the matrix is not diagonalizable.

Example

Consider the matrix $A=\left(\begin{array}{cc}-10 & -6 \\ 18 & 11\end{array}\right)$. The characteristic polynomial of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{cc}
-10-\lambda & -6 \\
18 & 11-\lambda
\end{array}\right|=(\lambda-2)(1+\lambda)
$$

Then the matrix is diagonalizable.
$E_{-1}=\langle(-2,3)\rangle$ and $E_{2}=\langle(1,-2)\rangle$.
The diagonal matrix is $D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)$
and the matrix P is $P=\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)$.

Example

Consider the matrix $A=\left(\begin{array}{ccc}5 & 0 & 4 \\ 2 & 1 & 5 \\ -4 & 0 & -3\end{array}\right)$. The characteristic polynomial of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{ccc}
5-\lambda & 0 & 4 \\
2 & 1-\lambda & 5 \\
-4 & 0 & -3-\lambda
\end{array}\right|=(1-\lambda)^{3} .
$$

Then the matrix is not diagonalizable.

Example

Consider the matrix $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & -1 \\ 1 & 0 & 2\end{array}\right)$. The characteristic polynomial of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
-1 & 1-\lambda & -1 \\
1 & 0 & 2-\lambda
\end{array}\right|=(1-\lambda)^{2}(2-\lambda)
$$

$E_{1}=\langle(0,1,0),(1,0,-1)\rangle$ and $E_{2}=\langle(0,1,-1)\rangle$.
Then the matrix is diagonalizable.
the diagonal matrix is $D=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$
and $P=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & -1\end{array}\right)$.

Example

Consider the matrix $A=\left(\begin{array}{cccc}5 & -3 & 0 & 9 \\ 0 & 3 & 1 & -2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$.
The characteristic polynomial of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{cccc}
5-\lambda & -3 & 0 & 9 \\
0 & 3-\lambda & 1 & -2 \\
0 & 0 & 2-\lambda & 0 \\
0 & 0 & 0 & 2-\lambda
\end{array}\right|=(5-\lambda)(3-\lambda)(2-\lambda)^{2} .
$$

The matrix is diagonalizable if and only if the dimension of the vector space E_{2} is 2.

$E_{2}=\langle(1,1,-1,0),(-1,2,0,1)\rangle$.

Then the matrix A is diagonalizable.
$E_{5}=\langle(1,0,0,0)\rangle$ and $E_{3}=\langle(3,2,0,0)\rangle$.
The diagonal matrix is $D=\left(\begin{array}{llll}5 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$
and $P=\left(\begin{array}{cccc}1 & 3 & 1 & -1 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

Example

Consider the matrix $A=\left(\begin{array}{ccc}2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2\end{array}\right)$.
The characteristic polynomial of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{ccc}
2-\lambda & 2 & -1 \\
1 & 3-\lambda & -1 \\
-1 & -2 & 2-\lambda
\end{array}\right|=-(\lambda-1)^{2}(\lambda-5)
$$

$E_{1}=\langle(1,0,1),(-2,1,0)\rangle, E_{5}=\langle(1,1,-1)\rangle$.
Then the matrix A is diagonalizable.
The diagonal matrix is $D=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5\end{array}\right)$ and $P=\left(\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & -1\end{array}\right)$

Example

Consider the matrix $A=\left(\begin{array}{ccc}7 & 4 & 16 \\ 2 & 5 & 8 \\ -2 & -2 & -5\end{array}\right)$.
The characteristic polynomial of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{ccc}
7-\lambda & 4 & 16 \\
2 & 5-\lambda & 8 \\
-2 & -2 & -5-\lambda
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)
$$

$E_{3}=\langle(1,-1,0),(4,0,-1)\rangle, E_{1}=\langle(2,1,-1)\rangle$.
Then the matrix A is diagonalizable.

The diagonal matrix is $D=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)$ and the matrix P is $P=$ $\left(\begin{array}{ccc}2 & 1 & 4 \\ 1 & -1 & 0 \\ -1 & 0 & -1\end{array}\right)$

Example

Consider the matrix $A=\left(\begin{array}{cccc}2 & -1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 3\end{array}\right)$. The characteristic polynomial of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{cccc}
2-\lambda & -1 & 0 & \frac{1}{2} \\
0 & 1-\lambda & 0 & \frac{1}{2} \\
-1 & 1 & 1-\lambda & -1 \\
1 & -1 & 1 & 3-\lambda
\end{array}\right|=(1-\lambda)(2-\lambda)^{3} .
$$

The matrix is diagonalizable if and only if the dimension the vector space E_{2} is 3 .
$E_{2}=\langle(-1,1,0,2),(-1,0,1,0)\rangle$. Then the matrix is not diagonalizable.

