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Eigenvalue and Eigenvector

Definition

If A ∈ Mn(R) and λ ∈ R.
λ is called an eigenvalue of the matrix A if there is X ∈ Rn \ {0}
such that

AX = λX .

The corresponding nonzero X are called eigenvectors of the matrix
A.
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Example

If A is the matrix A =

(
1 1
−3 5

)
, then the vector X =

(
1
1

)
is an

eigenvector for A because AX = 2X . The corresponding eigenvalue
is λ = 2.
Remark Note that if AX = λ and c is any real number, then
A(cX ) = cAX = c(λX ) = λ(cX ). Then, if X is an eigenvector
of A, then so is cX for any nonzero number c .
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The eigenvalue equation can be rewritten as (A − λI )X = 0. The
eigenvalues of A are the values of λ for which the above equation
has nontrivial solutions. There are nontrivial solutions if and only if
det(A− λI ) = 0.

Theorem

If A ∈ Mn(R) and λ ∈ R. λ is an eigenvalue the matrix A if and
only if det(A− λI ) = 0.
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Definition

If A ∈ Mn(R), the polynomial

qA(λ) = |A− λI |

is called the characteristic polynomial of the matrix A and the
equation qA(λ) = 0 is called the characteristic equation of A. The
eigenvalues of A are the roots of its characteristic polynomial.
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Example

Find all of the eigenvalues and eigenvectors of A =

(
1 3
2 2

)
.

Compute the characteristic polynomial qA(λ) =

∣∣∣∣1− λ 3
2 2− λ

∣∣∣∣ =

(λ+ 1)(λ−4). The roots of qA(λ) are −1 and 4. X1 =

(
3
−2

)
is an

eigenvector for A with respect to the eigenvalue −1 and X2 =

(
1
1

)
is an eigenvector for A with respect to the eigenvalue 4.
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Example

Find the eigenvalues of the following matrix

A =

 1 −1 0
−1 2 −1
0 −1 1

, A =

5 4 2
4 5 2
2 2 2

, A =

−1 4 −2
−3 4 0
−3 1 3

.
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Definition

If A is a matrix with characteristic polynomial p(),
If A is a matrix with characteristic polynomial qA(λ), the
multiplicity of a root λ of qA is called the algebraic multiplicity of
the eigenvalue λ.

Example Let A =

 1 0 0
−1 1 −1
1 0 2

. The characteristic function of

the matrix A is

qA(λ) =

∣∣∣∣∣∣
λ− 1 0 0

1 λ− 1 1
−1 0 λ− 2

∣∣∣∣∣∣ = (λ− 1)2(2− λ).

The eigenvalue λ = 1 has algebraic multiplicity 2, while λ = 2 has
algebraic multiplicity 1.
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Definition

Let A ∈ Mn(R) and λ an eigenvalue of the matrix A. The set

Eλ = {X ∈ Rn; AX = λX}

is called the eigenspace of A associated to the eigenvalue λ.
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Remark

If λ is an eigenvalue of the matrix A ∈ Mn(R), then
Eλ = {X ∈ Rn; AX = λX} is vector sub-space of Rn. Its
dimension is called the the geometric multiplicity of λ.

The geometric multiplicity of λ is the number of linearly independent
eigenvectors corresponding to λ.
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Theorem

The geometric multiplicity of an eigenvalue is less than or equal to
its algebraic multiplicity.

Definition

A matrix that has an eigenvalue whose geometric multiplicity is
less than its algebraic multiplicity is called defective.
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Theorem

If A ∈ Mn(R) and X1, . . . ,Xm are eigenvectors for different
eigenvalues λ1, . . . , λm, then X1, . . . ,Xm are linearly independent.

Proof
The proof is by induction. The result is true for m = 1.
Assume the result true for m and let X1, . . . ,Xm+1 be eigenvectors
for different eigenvalues λ1, . . . , λm+1.
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If a1X1 + . . . amXm + am+1Xm+1 = 0, then
a1λ1X1 + . . . amλmXm + am+1λm+1Xm+1 = 0. Also we have
a1λm+1X1 + . . . amλm+1Xm + am+1λm+1Xm+1 = 0. Then
a1(λ1 − λm+1)X1 + . . .+ am(λm − λm+1)Xm = 0. Since
(λj − λm+1) 6= 0 for all j = 1, . . .m, then a1 = . . . = am = 0 and
so am+1 = 0.
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Definition

A matrix A ∈ Mn(R) is called diagonalizable if there exists an
invertible matrix P ∈ Mn(R) such that the matrix P−1AP is
diagonal .
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Remark

If X1, . . . ,Xn are the columns of the matrix P, then the columns of
the matrix AP are: AX1, . . . ,AXn.
Moreover if

D =



λ1 0 . . . . . . 0

0 λ2 0 . . .
...

... 0
. . .

...
...

...
... . . .

. . . 0
0 . . . . . . 0 λn


then the columns of the matrix PD are: λ1X1, . . . , λnXn.
Then P−1AP = D ⇐⇒ PD = AP and the columns of the matrix
P form a basis of Rn of eigenvectors of the matrix A.
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Theorem

A matrix A ∈ Mn(R) is diagonalizable if and only if it has n
eigenvectors linearly independent. These vectors form a basis of
the vector space Rn.
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Examples

Prove that the following matrices are diagonalizable and find an
invertible matrix P ∈ Mn(R) such that the matrix P−1AP is
diagonal and find A15.

A =

 1 −1 0
−1 2 −1
0 −1 1

, A =

5 4 2
4 5 2
2 2 2

, A =

−1 4 −2
−3 4 0
−3 1 3

.
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Theorem

If A ∈ Mn(R) and the characteristic function

qA(λ) = C (λ− λ1)m1 . . . (λ− λp)mp

then A is diagonalizable if and only if the algebraic and geometric
multiplicities are equal.

Remark

For example, if a matrix A ∈ Mn(R) and has n different
eigenvalues, then A is diagonalizable.
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Example

Consider the matrix A =

(
5 4
−4 −3

)
. The characteristic polynomial

of the matrix A is

qA(λ) =

∣∣∣∣5− λ 4
−4 −3− λ

∣∣∣∣ = (1− λ)2.

Then the matrix is not diagonalizable.
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Example

Consider the matrix A =

(
−10 −6
18 11

)
. The characteristic polyno-

mial of the matrix A is

qA(λ) =

∣∣∣∣−10− λ −6
18 11− λ

∣∣∣∣ = (λ− 2)(1 + λ).

Then the matrix is diagonalizable.
E−1 = 〈(−2, 3)〉 and E2 = 〈(1,−2)〉.

The diagonal matrix is D =

(
−1 0
0 2

)
and the matrix P is P =

(
−2 1
3 −2

)
.
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Example

Consider the matrix A =

 5 0 4
2 1 5
−4 0 −3

. The characteristic poly-

nomial of the matrix A is

qA(λ) =

∣∣∣∣∣∣
5− λ 0 4

2 1− λ 5
−4 0 −3− λ

∣∣∣∣∣∣ = (1− λ)3.

Then the matrix is not diagonalizable.
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Example

Consider the matrix A =

 1 0 0
−1 1 −1
1 0 2

. The characteristic poly-

nomial of the matrix A is

qA(λ) =

∣∣∣∣∣∣
1− λ 0 0
−1 1− λ −1
1 0 2− λ

∣∣∣∣∣∣ = (1− λ)2(2− λ).

E1 = 〈(0, 1, 0), (1, 0,−1)〉 and E2 = 〈(0, 1,−1)〉.
Then the matrix is diagonalizable.

the diagonal matrix is D =

1 0 0
0 1 0
0 0 2


and P =

0 1 0
1 0 1
0 −1 −1

.
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Example

Consider the matrix A =


5 −3 0 9
0 3 1 −2
0 0 2 0
0 0 0 2

.

The characteristic polynomial of the matrix A is

qA(λ) =

∣∣∣∣∣∣∣∣
5− λ −3 0 9

0 3− λ 1 −2
0 0 2− λ 0
0 0 0 2− λ

∣∣∣∣∣∣∣∣ = (5− λ)(3− λ)(2− λ)2.

The matrix is diagonalizable if and only if the dimension of the vector
space E2 is 2.
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E2 = 〈(1, 1,−1, 0), (−1, 2, 0, 1)〉.
Then the matrix A is diagonalizable.
E5 = 〈(1, 0, 0, 0)〉 and E3 = 〈(3, 2, 0, 0)〉.

The diagonal matrix is D =


5 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2



and P =


1 3 1 −1
0 2 1 2
0 0 −1 0
0 0 0 1

.
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Example

Consider the matrix A =

 2 2 −1
1 3 −1
−1 −2 2

.

The characteristic polynomial of the matrix A is

qA(λ) =

∣∣∣∣∣∣
2− λ 2 −1

1 3− λ −1
−1 −2 2− λ

∣∣∣∣∣∣ = −(λ− 1)2(λ− 5).
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E1 = 〈(1, 0, 1), (−2, 1, 0)〉, E5 = 〈(1, 1,−1)〉.
Then the matrix A is diagonalizable.

The diagonal matrix is D =

1 0 0
0 1 0
0 0 5

 and P =

1 −2 1
0 1 1
1 0 −1
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Example

Consider the matrix A =

 7 4 16
2 5 8
−2 −2 −5

.

The characteristic polynomial of the matrix A is

qA(λ) =

∣∣∣∣∣∣
7− λ 4 16

2 5− λ 8
−2 −2 −5− λ

∣∣∣∣∣∣ = −(λ− 3)2(λ− 1).

E3 = 〈(1,−1, 0), (4, 0,−1)〉, E1 = 〈(2, 1,−1)〉.
Then the matrix A is diagonalizable.
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The diagonal matrix is D =

1 0 0
0 3 0
0 0 3

 and the matrix P is P = 2 1 4
1 −1 0
−1 0 −1
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Example

Consider the matrix A =


2 −1 0 1

2
0 1 0 1

2
−1 1 1 −1
1 −1 1 3

. The characteristic

polynomial of the matrix A is

qA(λ) =

∣∣∣∣∣∣∣∣
2− λ −1 0 1

2
0 1− λ 0 1

2
−1 1 1− λ −1
1 −1 1 3− λ

∣∣∣∣∣∣∣∣ = (1− λ)(2− λ)3.

The matrix is diagonalizable if and only if the dimension the vector
space E2 is 3.
E2 = 〈(−1, 1, 0, 2), (−1, 0, 1, 0)〉. Then the matrix is not diagonal-
izable.
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