Diagonalization of Matrix

Mongi BLEL

King Saud University

February 12, 2021

Eigenvalue and Eigenvector Diagonalization

Table of contents

Mongi BLEL Diagonalization of Matrix

Eigenvalue and Eigenvector

Definition

If $A \in M_n(\mathbb{R})$ and $\lambda \in \mathbb{R}$. λ is called an eigenvalue of the matrix A if there is $X \in \mathbb{R}^n \setminus \{0\}$

such that

$$AX = \lambda X.$$

The corresponding nonzero X are called eigenvectors of the matrix A.

If A is the matrix $A = \begin{pmatrix} 1 & 1 \\ -3 & 5 \end{pmatrix}$, then the vector $X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector for A because AX = 2X. The corresponding eigenvalue is $\lambda = 2$. Remark Note that if $AX = \lambda$ and c is any real number, then $A(cX) = cAX = c(\lambda X) = \lambda(cX)$. Then, if X is an eigenvector of A, then so is cX for any nonzero number c. The eigenvalue equation can be rewritten as $(A - \lambda I)X = 0$. The eigenvalues of A are the values of λ for which the above equation has nontrivial solutions. There are nontrivial solutions if and only if $det(A - \lambda I) = 0$.

Theorem

If $A \in M_n(\mathbb{R})$ and $\lambda \in \mathbb{R}$. λ is an eigenvalue the matrix A if and only if det $(A - \lambda I) = 0$.

Definition

If $A \in M_n(\mathbb{R})$, the polynomial

$$q_A(\lambda) = |A - \lambda I|$$

is called the characteristic polynomial of the matrix A and the equation $q_A(\lambda) = 0$ is called the characteristic equation of A. The eigenvalues of A are the roots of its characteristic polynomial.

Find all of the eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$. Compute the characteristic polynomial $q_A(\lambda) = \begin{vmatrix} 1-\lambda & 3 \\ 2 & 2-\lambda \end{vmatrix} = (\lambda+1)(\lambda-4)$. The roots of $q_A(\lambda)$ are -1 and 4. $X_1 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ is an eigenvector for A with respect to the eigenvalue -1 and $X_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector for A with respect to the eigenvalue 4.

Find the eigenvalues of the following matrix

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}, A = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}, A = \begin{pmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{pmatrix}.$$

Definition

If A is a matrix with characteristic polynomial p(), If A is a matrix with characteristic polynomial $q_A(\lambda)$, the multiplicity of a root λ of q_A is called the algebraic multiplicity of the eigenvalue λ .

Example Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$$
. The characteristic function of

the matrix A is

$$q_A(\lambda) = egin{pmatrix} \lambda-1 & 0 & 0 \ 1 & \lambda-1 & 1 \ -1 & 0 & \lambda-2 \end{bmatrix} = (\lambda-1)^2(2-\lambda).$$

The eigenvalue $\lambda = 1$ has algebraic multiplicity 2, while $\lambda = 2$ has algebraic multiplicity 1.

Definition

Let $A \in M_n(\mathbb{R})$ and λ an eigenvalue of the matrix A. The set

$$E_{\lambda} = \{ X \in \mathbb{R}^n; AX = \lambda X \}$$

is called the eigenspace of A associated to the eigenvalue λ .

Remark

If λ is an eigenvalue of the matrix $A \in M_n(\mathbb{R})$, then $E_{\lambda} = \{X \in \mathbb{R}^n; AX = \lambda X\}$ is vector sub-space of \mathbb{R}^n . Its dimension is called the the geometric multiplicity of λ .

The geometric multiplicity of λ is the number of linearly independent eigenvectors corresponding to λ .

Theorem

The geometric multiplicity of an eigenvalue is less than or equal to its algebraic multiplicity.

Definition

A matrix that has an eigenvalue whose geometric multiplicity is less than its algebraic multiplicity is called defective.

Theorem

If $A \in M_n(\mathbb{R})$ and X_1, \ldots, X_m are eigenvectors for different eigenvalues $\lambda_1, \ldots, \lambda_m$, then X_1, \ldots, X_m are linearly independent.

Proof

The proof is by induction. The result is true for m = 1. Assume the result true for m and let X_1, \ldots, X_{m+1} be eigenvectors for different eigenvalues $\lambda_1, \ldots, \lambda_{m+1}$.

If
$$a_1X_1 + \ldots a_mX_m + a_{m+1}X_{m+1} = 0$$
, then
 $a_1\lambda_1X_1 + \ldots a_m\lambda_mX_m + a_{m+1}\lambda_{m+1}X_{m+1} = 0$. Also we have
 $a_1\lambda_{m+1}X_1 + \ldots a_m\lambda_{m+1}X_m + a_{m+1}\lambda_{m+1}X_{m+1} = 0$. Then
 $a_1(\lambda_1 - \lambda_{m+1})X_1 + \ldots + a_m(\lambda_m - \lambda_{m+1})X_m = 0$. Since
 $(\lambda_j - \lambda_{m+1}) \neq 0$ for all $j = 1, \ldots m$, then $a_1 = \ldots = a_m = 0$ and
so $a_{m+1} = 0$.

Definition

A matrix $A \in M_n(\mathbb{R})$ is called diagonalizable if there exists an invertible matrix $P \in M_n(\mathbb{R})$ such that the matrix $P^{-1}AP$ is diagonal.

Remark

If X_1, \ldots, X_n are the columns of the matrix P, then the columns of the matrix AP are: AX_1, \ldots, AX_n . Moreover if

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & \vdots \\ \vdots & 0 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \dots & \ddots & 0 \\ 0 & \dots & \dots & 0 & \lambda_n \end{pmatrix}$$

then the columns of the matrix PD are: $\lambda_1 X_1, \ldots, \lambda_n X_n$. Then $P^{-1}AP = D \iff PD = AP$ and the columns of the matrix P form a basis of \mathbb{R}^n of eigenvectors of the matrix A.

Theorem

A matrix $A \in M_n(\mathbb{R})$ is diagonalizable if and only if it has n eigenvectors linearly independent. These vectors form a basis of the vector space \mathbb{R}^n .

Prove that the following matrices are diagonalizable and find an invertible matrix $P \in M_n(\mathbb{R})$ such that the matrix $P^{-1}AP$ is diagonal and find A^{15} .

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}, A = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}, A = \begin{pmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{pmatrix}.$$

Theorem

If $A \in M_n(\mathbb{R})$ and the characteristic function

$$q_A(\lambda) = C(\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_p)^{m_p}$$

then A is diagonalizable if and only if the algebraic and geometric multiplicities are equal.

Remark

For example, if a matrix $A \in M_n(\mathbb{R})$ and has *n* different eigenvalues, then A is diagonalizable.

Consider the matrix
$$A = \begin{pmatrix} 5 & 4 \\ -4 & -3 \end{pmatrix}$$
. The characteristic polynomial of the matrix A is

$$q_A(\lambda) = egin{bmatrix} 5-\lambda & 4 \ -4 & -3-\lambda \end{bmatrix} = (1-\lambda)^2.$$

Then the matrix is not diagonalizable.

Consider the matrix $A = \begin{pmatrix} -10 & -6 \\ 18 & 11 \end{pmatrix}$. The characteristic polynomial of the matrix A is

$$q_A(\lambda) = egin{bmatrix} -10 - \lambda & -6 \ 18 & 11 - \lambda \end{bmatrix} = (\lambda - 2)(1 + \lambda).$$

Then the matrix is diagonalizable. $E_{-1} = \langle (-2,3) \rangle$ and $E_2 = \langle (1,-2) \rangle$. The diagonal matrix is $D = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$ and the matrix P is $P = \begin{pmatrix} -2 & 1 \\ 3 & -2 \end{pmatrix}$.

Consider the matrix
$$A = \begin{pmatrix} 5 & 0 & 4 \\ 2 & 1 & 5 \\ -4 & 0 & -3 \end{pmatrix}$$
. The characteristic polynomial of the matrix A is

$$q_A(\lambda) = egin{pmatrix} 5-\lambda & 0 & 4 \ 2 & 1-\lambda & 5 \ -4 & 0 & -3-\lambda \end{bmatrix} = (1-\lambda)^3.$$

Then the matrix is not diagonalizable.

Consider the matrix $A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$. The characteristic polynomial of the matrix A is

$$q_A(\lambda) = egin{pmatrix} 1 - \lambda & 0 & 0 \ -1 & 1 - \lambda & -1 \ 1 & 0 & 2 - \lambda \end{bmatrix} = (1 - \lambda)^2 (2 - \lambda).$$

 $E_1 = \langle (0, 1, 0), (1, 0, -1) \rangle$ and $E_2 = \langle (0, 1, -1) \rangle$. Then the matrix is diagonalizable.

the diagonal matrix is $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

and
$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & -1 \end{pmatrix}$$
.
Mongi BLEL Diagona

Consider the matrix
$$A = \begin{pmatrix} 5 & -3 & 0 & 9 \\ 0 & 3 & 1 & -2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
.

The characteristic polynomial of the matrix A is

$$q_A(\lambda) = egin{pmatrix} 5-\lambda & -3 & 0 & 9 \ 0 & 3-\lambda & 1 & -2 \ 0 & 0 & 2-\lambda & 0 \ 0 & 0 & 0 & 2-\lambda \end{bmatrix} = (5-\lambda)(3-\lambda)(2-\lambda)^2.$$

The matrix is diagonalizable if and only if the dimension of the vector space E_2 is 2.

Mongi BLEL Diagonalization of Matrix

 $E_2 = \langle (1, 1, -1, 0), (-1, 2, 0, 1) \rangle.$ Then the matrix A is diagonalizable. $E_5 = \langle (1, 0, 0, 0) \rangle$ and $E_3 = \langle (3, 2, 0, 0) \rangle$. $E_5 - (1, 0, 0, 0)$ The diagonal matrix is $D = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$ and $P = \begin{pmatrix} 1 & 3 & 1 & -1 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & -1 & 0 \\ 2 & 0 & 0 & -1 \end{pmatrix}$.

Consider the matrix
$$A = \begin{pmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{pmatrix}$$
.
The characteristic polynomial of the matrix A is

$$q_A(\lambda) = egin{pmatrix} 2 - \lambda & 2 & -1 \ 1 & 3 - \lambda & -1 \ -1 & -2 & 2 - \lambda \end{bmatrix} = -(\lambda - 1)^2 (\lambda - 5).$$

$$\begin{split} E_1 &= \langle (1,0,1), (-2,1,0) \rangle, \ E_5 &= \langle (1,1,-1) \rangle. \\ \text{Then the matrix } A \text{ is diagonalizable.} \\ \text{The diagonal matrix is } D &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix} \text{ and } P = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \end{split}$$

Consider the matrix
$$A = \begin{pmatrix} 7 & 4 & 16 \\ 2 & 5 & 8 \\ -2 & -2 & -5 \end{pmatrix}$$
.
The characteristic polynomial of the matrix A is

$$q_A(\lambda) = \begin{vmatrix} 7 - \lambda & 4 & 16 \\ 2 & 5 - \lambda & 8 \\ -2 & -2 & -5 - \lambda \end{vmatrix} = -(\lambda - 3)^2(\lambda - 1).$$

 $E_3 = \langle (1, -1, 0), (4, 0, -1) \rangle$, $E_1 = \langle (2, 1, -1) \rangle$. Then the matrix A is diagonalizable.

The diagonal matrix is
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 and the matrix P is $P = \begin{pmatrix} 2 & 1 & 4 \\ 1 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$

Consider the matrix
$$A = \begin{pmatrix} 2 & -1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 3 \end{pmatrix}$$
. The characteristic

polynomial of the matrix A is

$$q_A(\lambda) = egin{pmatrix} 2-\lambda & -1 & 0 & rac{1}{2} \ 0 & 1-\lambda & 0 & rac{1}{2} \ -1 & 1 & 1-\lambda & -1 \ 1 & -1 & 1 & 3-\lambda \ \end{bmatrix} = (1-\lambda)(2-\lambda)^3.$$

The matrix is diagonalizable if and only if the dimension the vector space E_2 is 3. $E_2 = \langle (-1, 1, 0, 2), (-1, 0, 1, 0) \rangle$. Then the matrix is not diagonalizable.