Chapter 1: Probability Theory

Objectives of the chapter

- 1. Introduce basic concept of sets
- 2. Introduce basic concepts of probability
- 3. Introduce some useful counting methods

CLO1	Explain basic concepts probability, joint probability, conditional
	probability, independence, total probability, and Bayes' rule.

1. Set definitions

- A set can be defined as a collection of objects. Sets are generally denoted by capital letters as: A, B, C, ...
- The individual objects forming the set are called "elements" or "members". They are generally denoted by lower case letters as: a,b, c,...

•	If an element g belongs to a set G, we write:	
	$g\in G$	(1)
	Otherwise, we say g is not a member of G , we write:	
	$g ot\in G$	(2)

• A set is specified by the content of two braces: {·}.

• Representation of sets:

- Tabular method: the elements are enumerated explicitly. For example: A={3,4,5,6}.
- Rule method: the content of the set is specified using a rule. This representation is more convenient when the set is large. For example:

$$G = \{g \mid gis \text{ an integer and } 3 \le g \le 6\}$$
(3)
Such that

 Countable and uncountable sets: A set is called to be "countable" if its elements can be put in one-to-one correspondence with the integers 1,2,..etc.Otherwise, it is called "uncountable".

- Empty set: A set *G* is said to be empty, if it has no elements. It is also called null set and it is denoted by Ø.
- Finite and infinite sets: A finite set is either empty set or has elements that can be counted, with the counting process terminating. If a set is not finite it is called infinite.
- Subset: Given two sets *A* and *B*, if every element of *A* is also an element of *B*, *A* is said to be contained in *B*. *A* is known as a subset of *B*. We write:

Proper subset: If at least one element in *B* is not in *A*, then*A* is a proper subset of *B*, denoted by

$$A \subset B \tag{5}$$

• **Disjoint sets:** If two sets A and B have no common elements, then they are called disjoint or mutually exclusive.

Example 1:

Let us consider the following four sets:

$$A = \{ 1,3,5,7 \} \qquad D = \{ 0 \}$$

$$B = \{ 1,2,3, \dots \} \qquad E = \{ 2,4,6,8,10,12,14 \}$$

$$C = \{ c | cisreal and \ 0.5 < c \le 8.5 \} \qquad F = \{ f | f \text{ is real and } -5 < f \le 12 \}$$

Illustrate the previous concepts using the sets A, B, C, D, E, F.

Solution:

- The set A is tabularly specified, countable, and finite.
- Set A is contained in sets B, C and F.
- The set B is tabularly specified and countable, but is infinite.
- Set C is rule-specified, uncountable, and infinite.
- Sets D and E are countably finite.
- Set F is uncountably infinite.
- $C \subset F, D \subset F, E \subset B.$
- Sets *B* and *F* are not sub sets of any of the other sets or of each other.
- Sets *A*, *D* and *E* are mutually exclusive of each other.

Universal set: The set of all elements under consideration is called the universal set, denoted S. All sets (of the situation considered) are subsets of S.
 If we have a set S with n elements, then there are 2ⁿ subsets.
 In case of rolling die, the universal set is S = {1,2,3,4,5,6} and the number of subsets is 2⁶=64 subsets.

Example 2:

Determine the subsets of the following universal set $S = \{1, 2, 3, 4\}$

Solution:

The universal set is $S = \{1, 2, 3, 4\}$ and the number of subsets is 2^4 =16 subsets.

1	\oslash	9	{2,3}
2	{1}	10	{2,4}
3	{2}	11	{3,4}
4	{3}	12	{1,2,3}
5	{4}	13	{1, 3,4}
6	{1,2}	14	{1,2,4}
7	{1,3}	15	{2,3,4}
8	{1,4}	16	{1,2,3,4}

2. Set Operations

- Venn diagram: is a graphical representation of sets to help visualize sets and their operations.
- Union: set of all elements that are members of *A* or *B* or both and is denoted by *A* ∪ *B*.

• Intersection: set of all elements which belong to both A and B and is denoted by $A \cap B$

• **Difference:** Set consisting of all elements in A which are not in B and is denoted as A - B

• **Complement:** The set composed of all members in *S* and not in *A* is the complement of *A* and denoted \overline{A} . Thus

$$\bar{A} = S - A$$

It is easy to see that $\overline{\emptyset} = S$, $\overline{S} = \emptyset$, $A \cup \overline{A} = S$, and $A \cap \overline{A} = \emptyset$

Example 3:

Let us illustrate these concepts on the following four sets

 $S = \{ a \mid a \text{ is an integer and } 1 \le a \le 12 \}$ $A = \{1,3,5,12\}$ $B = \{2,6,7,8,9,10,11\}$ $C = \{1,3,4,6,7,8\}$ Solution:

• Unions and intersections $A \cup B = \{1,2,3,5,6,7,8,9,10,11,12\} \quad A \cap B = \emptyset$ $A \cup C = \{1,3,4,5,6,7,8,12\} \qquad A \cap C = \{1,3\}$ $B \cup C = \{1,2,3,4,6,7,8,9,10,11\} \qquad B \cap C = \{6,7,8\}$ • Complements $\overline{A} = \{2,4,6,7,8,9,10,11\}$ $\overline{B} = \{1,3,4,5,12\}$

$$\overline{C} = \{2, 5, 9, 10, 11, 12\}$$

(6)

• Algebra of sets:

✓ **Commutative law**: $A \cap B = B \cap A$

 $A\cup B=B\cup A$

✓ **Distributive law:** $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

✓ Associative law: $(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$

$$(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$$

✓ **De Morgan's Law:** $\overline{A \cup B} = \overline{A} \cap \overline{B}$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

3. Probability

- We use probability theory to develop a mathematical model of an experiment and to predict the outcome of an experiment of interest.
- A single performance of the experiment is called a trial for which there is an outcome.
- In building the relation between the set theory and the notion of probability, we call the set of all possible distinct outcomes of interest in a particular experiment as the <u>sample space</u> *S*
- The sample space *S* may be different for different experiments.
- The sample space S can be discrete or continuous, countable or uncountable, finite or infinite.
- An <u>event</u> is a particular outcome or a combination of outcomes.
- An event is a subset of the sample space S.

Probability definition and axioms

• Let *A* an event defined on the sample space *S*. The probability of the event *A* denoted as *P*(*A*) is a function that assigns to *A* a real number such that:

$$\checkmark \text{ Axiom1:} P(A) \ge 0 \tag{7}$$

 $\checkmark \quad \textbf{Axiom2:} P(S) = 1$

(8)

✓ Axiom3: if we have *N* events A_n , n = 1, 2, ..., N defined on the sample space*S*, and having the propriety: $A_m \cap A_n = \emptyset$ for $m \neq n$ (mutually exclusive events). Then:

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$
(9)

Or
$$P(\bigcup_{n=1}^{N} A_n) = \sum_{n=1}^{N} P(A_n)$$
 (10)

Some Properties:

For every event A, its probability is between 0 and 1:

$$0 \le P(A) \le 1 \tag{11}$$

9

- The probability of the impossible event is zero

$$P(\emptyset) = 0 \tag{12}$$

- If \overline{A} is the complement of A, then:

$$P(\bar{A}) = 1 - P(A) \tag{13}$$

• To model a real experiment mathematically, we shall :

- Define the sample space.
- Define the events of interest.
- Assign probabilities to the events that satisfy the probability axioms.

Example 4:

An experiment consists of observing the sum of two six sided dice when thrown randomly.

Develop a model for the experiment.

- Determine sample space S
- Let the event A be: "the sum events is 7"
- Let the event *B* be: " $8 < sum \le 11$ ".

Determine P(A), P(B), $P(\overline{A})$, $P(\overline{B})$.

Solution

The sample space: if one experiments can result in any of m possible outcomes and if another experiment can result in any of n possible outcomes, then there are nm possible outcomes of the two experiments (basic principle of counting). The sample space consists of $6^2 = 36$ different outcomes.

$$S = \begin{cases} (1,1) & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \\ (2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\ (3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\ (4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\ (5,1) & (5,2) & (5,3) & (5,4) & (5,5) & (5,6) \\ (6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6) \end{cases}$$

Let events A= {sum = 7}, B= { $8 < sum \le 11$ }.

In probability assignment, if the dice are not biased, then P(each outcome)=1/36.

To obtain p(A) and P(B), note that the outcomes are mutually exclusive: therefore, axiom 3 applies:

$$P(A) = P(\bigcup_{i=1}^{6} S_{i,7-i}) = 6(\frac{1}{36}) = \frac{1}{6}$$
$$P(B) = 9(\frac{1}{36}) = \frac{1}{4}$$

4. Joint and conditional probability

Joint probability

- When two events *A* and *B* have some elements in common (not mutually exclusive), then axiom3 cannot be applied.
- The probability P(A ∩ B) is called the joint probability for the events A and B which intersect in sample space.

$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$
Equivalently:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
(14)

Conditional probability

- Given some event *B* with nonzero probability *P*(*B*)>0
- We defined, the conditional probability of an event A given *B*, by:

$$\mathsf{P}(A|B) = \frac{P(A \cap B)}{P(B)} \tag{15}$$

• P(A|B) is the probability that A will occur given that B has occurred.

• If the occurrence of event *B* has no effect on *A*, we say that *A* and *B* are independent events. In this case,

$$\mathsf{P}(A|B) = P(A) \tag{16}$$

Which means that:

$$P(A \cap B) = P(A)P(B) \tag{17}$$

Example 4

In a box there are 100 resistors having resistance and tolerance as shown below:

	Tolerance		
Resistance(Ω)	5%	10%	Total
22	10	14	24
47	28	16	44
100	24	8	32
Total	62	38	100

Let a resistor be selected from the box and define the events:

A = 'Draw 47 Ω resistor'

B = 'Draw resistor with 5% tolerance'

 $C = 'Draw 100 \Omega resistor'$

Find P(A), P(B), P(C), $P(A \cap B)$, $P(A \cap C)$, $P(B \cap C)$, P(A|B), P(A|C), P(B|C).

Solution

P(A)=P(47 Ω)=44/100=0.44. P(B)=P(5%)=62/100=0.62 P(C)=P(100 Ω)=32/100=0.32

Joint probabilities are:

$$P(A \cap B) = P(47\Omega \cap 5\%) = \frac{28}{100} = 0.28$$

$$P(A \cap C) = P(47\Omega \cap 100\Omega) = 0$$

$$P(B \cap C) = P(5\% \cap 100\Omega) = \frac{24}{100} = 0.24$$

The conditional probabilities become:

 $P(A / B) = P(47\Omega / 5\%)$ is the probability of drawing a 47 Ω resistor given that the resistor drawn is 5%.

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{28}{62}$$
$$P(A/C) = \frac{P(A \cap C)}{P(C)} = 0$$
$$P(B/C) = \frac{P(B \cap C)}{P(C)} = \frac{24}{32}$$

Total probability

• Suppose we are given n mutually exclusive events B_n , n = 1....., N such that:

$$\bigcup_{n=1}^{N} Bn = S \tag{18}$$

and

$$B_m \cap B_n = \emptyset$$
 for m $\neq n$

13

• The **total probability of** an event *A* defined on the sample space *S* can be expressed in terms of conditional probabilities as follows:

$$P(A) = \sum_{n=1}^{N} P(A|B_n) P(B_n)$$
(19)

<u>Prove</u>: since $A = A \cap S = A \cap (\bigcup_{n=1}^{N} Bn) = \bigcup_{n=1}^{N} (A \cap Bn)$

As shown in the diagram, $A \cap Bn$ events are mutually exclusive; therefore:

 $\mathbf{P}(\mathbf{A}) = \mathbf{P}[\bigcup_{n=1}^{N} (A \cap Bn)] = \sum_{n=1}^{N} P(A \cap Bn)$ Since $\mathbf{P}(A \cap Bn) = P(A|Bn) P(Bn)$ #

 $A \cap B_m$ and $A \cap B_n$ Are mutually exclusive

Bayes' Theorem:

• The Bayes rule expresses a conditional probability in terms of other conditional probabilities, we have:

$$P(B_n|A) = \frac{P(B_n \cap A)}{P(A)}$$
⁽²⁰⁾

$$P(A|B_n) = \frac{P(A \cap B_n)}{P(Bn)}$$
(21)

14

Therefore one form of the Bayes theorem is given by equating these two expressions:

$$P(Bn|A) = \frac{P(A|B_n)P(B_n)}{P(A)}$$
(22)

which can be written also as another form:

$$P(Bn|A) = \frac{P(A|B_n)P(B_n)}{P(A|B_1)P(B_1) + \dots P(A|B_N)P(B_N)}$$
(23)

Example 5: A binary Communication system is described as:

a) $P(A_0)$ ('0' is received).

b)
$$P(A_1)$$
 ('1' is received).

c)
$$P(B_0/A_0), P(B_0/A_1), P(B_1/A_0), P(B_1/A_1).$$

Solution:

Note that A_0 and A_1 are mutually exclusive and $P(A_0) + P(A_1) = 1$

c)
$$P(B_0|A_0) = \frac{P(A_0|B_0)P(B_0)}{P(A_0)} = \frac{0.9(0.6)}{0.58} = 0.931$$

 $P(B_0|A_1) = \frac{P(A_1|B_0)P(B_0)}{P(A_1)} = \frac{0.1(0.6)}{0.42} = 0.143$
 $P(B_1|A_0) = \frac{P(A_0|B_1)P(B_1)}{P(A_0)} = \frac{0.1(0.4)}{0.58} = 0.069$
 $P(B_1|A_1) = \frac{P(A_1|B_1)P(B_1)}{P(A_1)} = \frac{0.9(0.4)}{0.42} = 0.857$

Note that $P(B_0|A_1)$ and $P(B_1|A_0)$ are probabilities of error and $P(B_0|A_0)$ and $P(B_1|A_1)$ are probabilities of correct transmission.

5. Independent Events

• Two events *A* and *B* are said to be independent if the occurrence of one event is not affected by the occurrence of the other. That is:

$$P(A \mid B) = P(A) \tag{24}$$

And we also have

$$P(B|A) = P(B) \tag{25}$$

Since

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \Longrightarrow P(A \cap B) = P(A)P(B)$$
 (joint occurrence, intersection) (26)

- Note that for mutually exclusive events **P** (**A** \cap **B**) = **0** Therefore, for $P(A) \neq 0$, $P(B) \neq 0$, A and B cannot be both mutually exclusive ($A \cap B = \emptyset$), and independent ($A \cap B \neq \emptyset$).

Example 1.5:

One card is selected from 52 card deck. Define events A= "select a king", B=select Jack or queen" and C= "select a heart"

Find:

1 11	nu.																								
a)	P(.	A)),]	P(F	3),	, P	P (C)																	
b)	Р(A	Λ	B)	, P	P(1	Bn	С), I	P(A	$\cap \mathcal{C}$.).													
c)	Ar	e 1	th	e e	ve	ent	ts i	nd	ep	enc	lent	?													
A			2	۸		3	*		4.	*	5.	4	6 .	*	7.		8		9.		10	4.4	J	9	K
1	*	. 1	•	-		•			• •		•			4	1	*.	•	+.	+	.+		***	16SIR		107
	4.	+		-	+		-	+	-	-								*				÷.	1997	1 St.	
-	_	A	2		2	7	•	5	•	• •		• 5	· ·	• 9	17	•••		• • 8	1.	• 6	10	• • 0			
÷			÷	٠		÷	٠		•	٠	**	٠	••	٠	+		÷	• •	**	•	÷	**	12		
	¢				33		٠					٠	•	٠	1	•	1	• •	1.	•			State of		A.
		¥		۴	ŝ		۴	\$	۴	•	•	÷,	•	*		• •		• • •	•	•		•••			
A		٦	2	٠		3	٠	٦	4♥	٠	5.	٠	6₩	٠	7.		8		2♥		10		J	9	K www.
	٠															×*•							120	8.8	240
																		-		-					
A	-	-	2		6	3		-1	4.		15 .		6.		17		18		19.		lan .		J	0	K
٠	-		÷	•		÷	•		••	•	••		•	•	ŀ.	•	٠	•		:	Ĩ	•	1	1	
	٠				1		٠					•	•	•		••		•••		••			121	214	SEL
		¥		٠	ż		٠	5	٠	•	•	• 5	٠	• ;		• • ?		• • •	•	•6		• • • o		A	

S**olu**:

a) $\mathbf{P}(\mathbf{A}) = \frac{4}{52}$, $\mathbf{P}(\mathbf{B}) = \frac{8}{52}$, $\mathbf{P}(\mathbf{C}) = \frac{13}{52}$

It is not possible to simultaneously select a king and a jack or a queen.

b)
$$\mathbf{P}(A \cap B) = \mathbf{0}$$
, $\mathbf{P}(A \cap C) = \frac{1}{52}$, $\mathbf{P}(B \cap C) = \frac{2}{52}$

We determine whether A, B, and C are independent by pairs.

c) $\mathbf{P}(A \cap B) = \mathbf{0} \neq \mathbf{P}(A) \mathbf{P}(B) \Longrightarrow A$ and B are not independent

 $\mathbf{P}(A \cap C) = \frac{1}{52} = \mathbf{P}(A) \mathbf{P}(C) \Longrightarrow A \text{ and } C \text{ are independent}$ $\mathbf{P}(B \cap C) = \frac{2}{52} = \mathbf{P}(B) \mathbf{P}(C) \Longrightarrow B \text{ and } C \text{ are independent}$

- In case of multiple events, they are said to be independent if all pairs are independent and:

 $\mathbf{P}(A1 \cap A2 \cap A3) = P(A1) P(A2) P(A3)$

6. Combined Experiments

- A combined experiment consists of forming a single experiment by suitably combining individual experiments.
- These experiments are called sub-experiments

(27)

If we have N sample spaces S_n; n=1,2,....N having elements s_n then the combined sample space is defined as:

```
S=S_1 \times S_2 \times ... \times S_N
```

Example 6:

Let us consider the two following sub-experiments:

- Flipping a coin
- Rolling of single die

Determine the sample space S_1 and S_2 corresponding to these two sub-experiments.

Determine the combined sample space S.

Solution:

Solu: for flipping a coin: S1={H,T}

For rolling a die: $S_2 = \{1, 2, 3, 4, 5, 6\}$

 $S = S_1 X S_2 = \{(H,1), (H,2), (H,3), (H,4), (H,5), (H,6), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6)\}$

Example 7:

We flip a coin twice. What is the combined sample space S

Solution:

 $S_1 = \{H, T\}$

 $S_2 = \{H, T\}$

$S = \{(H, H), (H, T), (T, H), (T, T)\}$

7. Some counting methods

Count the number of words of length k with n letters.
 Each digit has
 3 possibilities

Ex: n=3, {A, B, C}. and k=5, <u>A B B A C</u> the number $\#=3^5$ more generally $\#=n^k$. 3 3 3 3 3

• Count the number of words of length k from alphabet of k letters with no allowed repetition (i.e. Permutation of k objects).

<u>Ex</u>: n=5 {A, B, C, D, E}, k=5, $\underline{D} \underline{B} \underline{E}_{-}$ # = k (k-1) (k-2) ... (2) (1) = k! 5 4 3 2 1

 Number of words of length k from alphabet with n letters, repetition not allowed (permutation ordering is important here)

$$# = P_k^n = n (n-1) (n-2) \dots (n-k+1) = \frac{n!}{(n-k)!}$$

If order of elements in a sequence is not important (take one element from all the permuted elements), then the number of possible sequences is called **combinations**, which equals P_kⁿ divided by the number of permutations (orderings) of k elements
 P_k^k = k!. The number of combinations of k elements taken from n elements {n / k} is:

$$C_k^n = \binom{n}{k} = \frac{n!}{(n-k)!\,k!}$$

 $\binom{n}{k}$ is called the binomial coefficients.

Example 8:

How many permutations for four cards taken from 52 cards?

Solu:
$$P_4^{52} = \frac{52!}{(52-4)!} = 52(51)(50)(49) = 6,497,400$$

Example 9:

A team of 3 players is to be selected from 5 players, how many teams can be chosen? Solu: $\binom{5}{3} = \frac{5!}{3! 2!} = 10$

Example 10:

A number is composed of 5 digits. How many way are there for this number? Solu: no. of ways = $10 \times 10 \times 10 \times 10 \times 10 = 10^5$

8. Bernoulli Trials

• These type of experiments are characterized by two possible outcomes: A and \bar{A} .

For example: flipping a coin, hitting or missing a target, receiving 0 or 1.

• Let P(A) = p, Then $P(\overline{A}) = 1-p$.

If the experiment is repeated N times, then the probability that event **A** occurs **k** times (regardless of ordering) equals the probability of this sequence multiplied by its number. In this case, \overline{A} will occur **N**-**k** times and the probability of this sequence (one sequence) is:

 $P(A) P(A) P(A) P(\bar{A}) P(\bar{A}) P(\bar{A}) = P^{k} (1 - P)^{N-k}$ k times N-k times

• There are other sequences that will yield k events A and N-k events \overline{A} , From a combinatorial analysis, the number of sequences where A occurs k times in N trials is:

$$\binom{N}{k} = \frac{N!}{k! (N-k)!}$$

Finally we obtain the probability:

P (A occurs k times) = $\binom{N}{k}p^k(1-p)^{N-k}$

Example 12:

A submarine will sink a ship if two or more rockets hit the ship. If the submarine fires 3 rockets and P(hit) = 0.4 for each rocket, what is the probability that the ship will be sunk?

Solution:

$$P(no hits) = {3 \choose 0} 0.4^{0} (1 - 0.4)^{3} = 0.216$$

$$P(1 hit) = {3 \choose 1} 0.4^{1} (1 - 0.4)^{2} = 0.432$$

$$P(2 hits) = {3 \choose 2} 0.4^{2} (1 - 0.4)^{1} = 0.288$$

$$P(3 hits) = {3 \choose 3} 0.4^{3} (1 - 0.4)^{0} = 0.064$$

P (ship sunk) = P (two hits and more) = P (2 hits) + P (3 hits) = 0.352