CHAPTER 14

POLYMER STRUCTURES

PROBLEM SOLUTIONS

Hydrocarbon Molecules

Polymer Molecules

The Chemistry of Polymer Molecules

14.1 The repeat unit structures called for are sketched below.
(a) Polychlorotrifluoroethylene

(b) Poly(vinyl alcohol)

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
14.19 (a) This portion of the problem asks us to determine the ratio of butadiene to acrylonitrile repeat units in a copolymer having a weight-average molecular weight of $250,000 \mathrm{~g} / \mathrm{mol}$ and a degree of polymerization of 4640. It first becomes necessary to calculate the average repeat unit molecular weight of the copolymer, \bar{m}, using Equation 14.6 as

$$
\bar{m}=\frac{\bar{M}_{n}}{D P}=\frac{250,000 \mathrm{~g} / \mathrm{mol}}{4640}=53.88 \mathrm{~g} / \mathrm{mol}
$$

If we designate f_{b} as the chain fraction of butadiene repeat units, since the copolymer consists of only two repeat unit types, the chain fraction of acrylontrile repeat units f_{a} is just $1-f_{b}$. Now, Equation 14.7 for this copolymer may be written in the form

$$
\bar{m}=f_{b} m_{b}+f_{a} m_{a}=f_{b} m_{b}+\left(1-f_{b}\right) m_{a}
$$

in which m_{b} and m_{a} are the repeat unit molecular weights for butadiene and acrylontrile, respectively. These values are calculated as follows:

$$
\begin{gathered}
m_{b}=4\left(A_{\mathrm{C}}\right)+6\left(A_{\mathrm{H}}\right)=4(12.01 \mathrm{~g} / \mathrm{mol})+6(1.008 \mathrm{~g} / \mathrm{mol})=54.09 \mathrm{~g} / \mathrm{mol} \\
m_{a}=3\left(A_{\mathrm{C}}\right)+3\left(A_{\mathrm{H}}\right)+\left(A_{\mathrm{N}}\right)=3(12.01 \mathrm{~g} / \mathrm{mol})+3(1.008 \mathrm{~g} / \mathrm{mol})+(14.01 \mathrm{~g} / \mathrm{mol}) \\
=53.06 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Solving for f_{b} in the above expression yields

$$
f_{b}=\frac{\bar{m}-m_{a}}{m_{b}-m_{a}}=\frac{53.88 \mathrm{~g} / \mathrm{mol}-53.06 \mathrm{~g} / \mathrm{mol}}{54.09 \mathrm{~g} / \mathrm{mol}-53.06 \mathrm{~g} / \mathrm{mol}}=0.80
$$

Furthermore, $f_{a}=1-f_{b}=1-0.80=0.20$; or the ratio is just

$$
\frac{f_{b}}{f_{a}}=\frac{0.80}{0.20}=4.0
$$

(b) Of the possible copolymers, the only one for which there is a restriction on the ratio of repeat unit types is alternating; the ratio must be 1:1. Therefore, on the basis of the result in part (a), the possibilities for this copolymer are random, graft, and block.
14.18 For an alternating copolymer that has a number-average molecular weight of $100,000 \mathrm{~g} / \mathrm{mol}$ and a degree of polymerization of 2210 , we are to determine one of the repeat unit types if the other type is ethylene. It is first necessary to calculate \bar{m} using Equation 14.6 as

$$
\bar{m}=\frac{\bar{M}_{n}}{D P}=\frac{100,000 \mathrm{~g} / \mathrm{mol}}{2210}=42.25 \mathrm{~g} / \mathrm{mol}
$$

Since this is an alternating copolymer we know that chain fraction of each repeat unit type is 0.5 ; that is $f_{e}=f_{x}=$ $0.5, f_{e}$ and f_{x} being, respectively, the chain fractions of the ethylene and unknown repeat units. Also, the repeat unit molecular weight for ethylene is

$$
\begin{gathered}
m_{s}=2\left(A_{\mathrm{C}}\right)+4\left(A_{\mathrm{H}}\right) \\
=2(12.01 \mathrm{~g} / \mathrm{mol})+4(1.008 \mathrm{~g} / \mathrm{mol})=28.05 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Now, using Equation 14.7, it is possible to calculate the repeat unit weight of the unknown repeat unit type, m_{x}. Thus

$$
\begin{gathered}
m_{x}=\frac{\bar{m}-f_{e} m_{e}}{f_{X}} \\
=\frac{45.25 \mathrm{~g} / \mathrm{mol}-(0.5)(28.05 \mathrm{~g} / \mathrm{mol})}{0.5}=62.45 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Finally, it is necessary to calculate the repeat unit molecular weights for each of the possible other repeat unit types. These are calculated below:

$$
\begin{aligned}
& m_{\text {styrene }}=8\left(A_{\mathrm{C}}\right)+8\left(A_{\mathrm{H}}\right)=8(12.01 \mathrm{~g} / \mathrm{mol})+8(1.008 \mathrm{~g} / \mathrm{mol})=104.16 \mathrm{~g} / \mathrm{mol} \\
& m_{\text {propylene }}=3\left(A_{\mathrm{C}}\right)+6\left(A_{\mathrm{H}}\right)=3(12.01 \mathrm{~g} / \mathrm{mol})+6(1.008 \mathrm{~g} / \mathrm{mol})=42.08 \mathrm{~g} / \mathrm{mol} \\
& m_{\mathrm{TFE}}=2\left(A_{\mathrm{C}}\right)+4\left(A_{\mathrm{F}}\right)=2(12.01 \mathrm{~g} / \mathrm{mol})+4(19.00 \mathrm{~g} / \mathrm{mol})=100.02 \mathrm{~g} / \mathrm{mol} \\
& m_{\mathrm{VC}}=2\left(A_{\mathrm{C}}\right)+3\left(A_{\mathrm{H}}\right)+\left(A_{\mathrm{Cl}}\right)=2(12.01 \mathrm{~g} / \mathrm{mol})+3(1.008 \mathrm{~g} / \mathrm{mol})+35.45 \mathrm{~g} / \mathrm{mol}=62.49 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Therefore, vinyl chloride is the other repeat unit type since its m value is almost the same as the calculated m_{χ}.
14.17 This problem asks for us to calculate the number-average molecular weight of a random poly(isobutylene-isoprene) copolymer. For the isobutylene repeat unit there are four carbon and eight hydrogen atoms. Thus, its repeat unit molecular weight is

$$
\begin{gathered}
m_{\mathrm{Ib}}=4\left(A_{\mathrm{C}}\right)+8\left(A_{\mathrm{H}}\right) \\
=(4)(12.01 \mathrm{~g} / \mathrm{mol})+(8)(1.008 \mathrm{~g} / \mathrm{mol})=56.10 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

The isoprene repeat unit is composed of five carbon and eight hydrogen atoms. Thus, its repeat unit molecular weight is

$$
\begin{gathered}
m_{\mathrm{Ip}}=5\left(A_{\mathrm{C}}\right)+8\left(A_{\mathrm{H}}\right) \\
=(5)(12.01 \mathrm{~g} / \mathrm{mol})+(8)(1.008 \mathrm{~g} / \mathrm{mol})=68.11 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

From Equation 14.7, the average repeat unit molecular weight is just

$$
\begin{gathered}
\bar{m}=f_{\mathrm{Ib}} m_{\mathrm{Ib}}+f_{\mathrm{Ip}} m_{\mathrm{Ip}} \\
=(0.25)(56.10 \mathrm{~g} / \mathrm{mol})+(0.75)(68.11 \mathrm{~g} / \mathrm{mol})=65.11 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Since $D P=1500$ (as stated in the problem), \bar{M}_{n} may be computed using Equation 14.6 as

$$
\bar{M}_{n}=\bar{m}(D P)=(65.11 \mathrm{~g} / \mathrm{mol})(1500)=97,700 \mathrm{~g} / \mathrm{mol}
$$

14.16 For a poly(acrylonitrile-butadiene) alternating copolymer with a number-average molecular weight of $1,000,000 \mathrm{~g} / \mathrm{mol}$, we are asked to determine the average number of acrylonitrile and butadiene repeat units per molecule.

Since it is an alternating copolymer, the number of both types of repeat units will be the same. Therefore, consider them as a single repeat unit, and determine the number-average degree of polymerization. For the acrylonitrile repeat unit, there are three carbon atoms, three hydrogen atoms, and one nitrogen atom, while the butadiene repeat consists of four carbon atoms and six hydrogen atoms. Therefore, the acrylonitrile-butadiene combined repeat unit weight is just

$$
\begin{gathered}
m=7\left(A_{\mathrm{C}}\right)+9\left(A_{\mathrm{H}}\right)+1\left(A_{\mathrm{N}}\right) \\
=(7)(12.01 \mathrm{~g} / \mathrm{mol})+(9)(1.008 \mathrm{~g} / \mathrm{mol})+(14.01 \mathrm{~g} / \mathrm{mol})=107.15 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

From Equation 14.6, the degree of polymerization is just

$$
D P=\frac{\bar{M}_{n}}{m}=\frac{1,000,000 \mathrm{~g} / \mathrm{mol}}{107.15 \mathrm{~g} / \mathrm{mol}}=9333
$$

Thus, there is an average of 9333 of both repeat unit types per molecule.

Copolymers

14.15 This problem asks for sketches of the repeat unit structures for several alternating copolymers.
(a) For poly(ethylene-propylene)

(b) For poly(butadiene-styrene)

(c) For poly(isobutylene-isoprene)

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
14.14 (a) It is not possible to grind up and reuse phenol-formaldehyde because it is a network thermoset polymer and, therefore, is not amenable to remolding.
(b) Yes, it is possible to grind up and reuse polypropylene since it is a thermoplastic polymer, will soften when reheated, and, thus, may be remolded.

Thermoplastic and Thermosetting Polymers

14.13 This question asks for comparisons of thermoplastic and thermosetting polymers.
(a) Thermoplastic polymers soften when heated and harden when cooled, whereas thermosetting polymers, harden upon heating, while further heating will not lead to softening.
(b) Thermoplastic polymers have linear and branched structures, while for thermosetting polymers, the structures will normally be network or crosslinked.
14.12 This problem asks for us to sketch cis and trans structures for butadiene and chloroprene.
(a) The structure for cis polybutadiene (Table 14.5) is

The structure of trans butadiene is

(b) The structure of cis chloroprene (Table 14.5) is

The structure of trans chloroprene is

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

Molecular Configurations

14.11 We are asked to sketch portions of a linear polypropylene molecule for different configurations (using two-dimensional schematic sketches).
(a) Syndiotactic polypropylene

(b) Atactic polypropylene

(c) Isotactic polypropylene

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
14.8 (a) For chlorinated polyethylene, we are asked to determine the weight percent of chlorine added for $8 \% \mathrm{Cl}$ substitution of all original hydrogen atoms. Consider 50 carbon atoms; there are 100 possible side-bonding sites. Ninety-two are occupied by hydrogen and eight are occupied by Cl . Thus, the mass of these 50 carbon atoms, m_{C}, is just

$$
m_{\mathrm{C}}=50\left(A_{\mathrm{C}}\right)=(50)(12.01 \mathrm{~g} / \mathrm{mol})=600.5 \mathrm{~g}
$$

Likewise, for hydrogen and chlorine,

$$
\begin{aligned}
& m_{\mathrm{H}}=92\left(A_{\mathrm{H}}\right)=(92)(1.008 \mathrm{~g} / \mathrm{mol})=92.74 \mathrm{~g} \\
& m_{\mathrm{Cl}}=8\left(A_{\mathrm{Cl}}\right)=(8)(35.45 \mathrm{~g} / \mathrm{mol})=283.60 \mathrm{~g}
\end{aligned}
$$

Thus, the concentration of chlorine, C_{Cl}, is determined using a modified form of Equation 4.3 as

$$
\begin{gathered}
C_{\mathrm{Cl}}=\frac{m_{\mathrm{Cl}}}{m_{\mathrm{C}}+m_{\mathrm{H}}+m_{\mathrm{Cl}}} \times 100 \\
=\frac{283.60 \mathrm{~g}}{600.5 \mathrm{~g}+92.74 \mathrm{~g}+283.60 \mathrm{~g}} \times 100=29.0 \mathrm{wt} \%
\end{gathered}
$$

(b) Chlorinated polyethylene differs from poly(vinyl chloride), in that, for PVC, (1) 25% of the sidebonding sites are substituted with Cl , and (2) the substitution is probably much less random.
14.7 This problem asks if it is possible to have a poly(vinyl chloride) homopolymer with the given molecular weight data and a degree of polymerization of 1120 . The appropriate data are given below along with a computation of the number-average molecular weight.

Molecular wt. Range	Mean M_{i}	x_{i}	$x_{i} M_{i}$
$8,000-20,000$	14,000	0.05	700
$20,000-32,000$	26,000	0.15	3900
$32,000-44,000$	38,000	0.21	7980
$44,000-56,000$	50,000	0.28	14,000
$56,000-68,000$	62,000	0.18	11,160
$68,000-80,000$	74,000	0.10	7440
$80,000-92,000$	86,000	0.03	2580
		$\quad \bar{M}_{w}=\sum x_{i} M_{i}=47,720 \mathrm{~g} / \mathrm{mol}$	

For PVC, from Table 14.3, each repeat unit has two carbons, three hydrogens, and one chlorine. Thus,

$$
\begin{gathered}
m=2\left(A_{\mathrm{C}}\right)+3\left(A_{\mathrm{H}}\right)+\left(A_{\mathrm{Cl}}\right) \\
=(2)(12.01 \mathrm{~g} / \mathrm{mol})+(3)(1.008 \mathrm{~g} / \mathrm{mol})+(35.45 \mathrm{~g} / \mathrm{mol})=62.49 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Now, we will compute the degree of polymerization using Equation 14.6 as

$$
D P=\frac{\bar{M}_{n}}{m}=\frac{47,720 \mathrm{~g} / \mathrm{mol}}{62.49 \mathrm{~g} / \mathrm{mol}}=764
$$

Thus, such a homopolymer is not possible since the calculated degree of polymerization is 764 not 1120 .

The repeat unit molecular weights of the polymers listed in Table 14.3 are as follows:

Polyethylene--28.05 g/mol
Poly(vinyl chloride)--62.49 g/mol
Polytetrafluoroethylene--100.02 g/mol
Polypropylene--42.08 g/mol
Polystyrene--104.14 g/mol
Poly(methyl methacrylate)-- $100.11 \mathrm{~g} / \mathrm{mol}$
Phenol-formaldehyde-- $133.16 \mathrm{~g} / \mathrm{mol}$
Nylon 6,6--226.32 g/mol
PET--192.16 g/mol
Polycarbonate--254.27 g/mol

Therefore, polytetrafluoroethylene is the material since its repeat unit molecular weight is closest to that calculated above.
14.6 (a) From the tabulated data, we are asked to compute \bar{M}_{n}, the number-average molecular weight. This is carried out below.

Molecular wt.

Range	Mean M_{i}	x_{i}	$x_{i} M_{i}$
$8,000-20,000$	14,000	0.05	700
$20,000-32,000$	26,000	0.15	3900
$32,000-44,000$	38,000	0.21	7980
$44,000-56,000$	50,000	0.28	14,000
$56,000-68,000$	62,000	0.18	11,160
$68,000-80,000$	74,000	0.10	7400
$80,000-92,000$	86,000	0.03	2580
		$\bar{M}_{n}=\sum x_{i} M_{i}=47,720 \mathrm{~g} / \mathrm{mol}$	

(b) From the tabulated data, we are asked to compute \bar{M}_{w}, the weight-average molecular weight. This determination is performed as follows:

Molecular wt.

Range	Mean M_{i}	w_{i}	$w_{i} M_{i}$
8,000-20,000	14,000	0.02	280
$20,000-32,000$	26,000	0.08	2080
$32,000-44,000$	38,000	0.17	6460
$44,000-56,000$	50,000	0.29	14,500
$56,000-68,000$	62,000	0.23	14,260
$68,000-80,000$	74,000	0.16	11,840
$80,000-92,000$	86,000	0.05	4300
		$\overline{M_{w}}=\sum w_{i} M_{i}=53,720 \mathrm{~g} / \mathrm{mol}$	

(c) We are now asked if the degree of polymerization is 477, which of the polymers in Table 14.3 is this material? It is necessary to compute m in Equation 14.6 as

$$
m=\frac{\bar{M}_{n}}{D P}=\frac{47,720 \mathrm{~g} / \mathrm{mol}}{477}=100.04 \mathrm{~g} / \mathrm{mol}
$$

$$
\begin{gathered}
m=2\left(A_{\mathrm{C}}\right)+4\left(A_{\mathrm{F}}\right) \\
=(2)(12.01 \mathrm{~g} / \mathrm{mol})+(4)(19.00 \mathrm{~g} / \mathrm{mol})=100.02 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

And

$$
D P=\frac{\bar{M}_{n}}{m}=\frac{49,800 \mathrm{~g} / \mathrm{mol}}{100.02 \mathrm{~g} / \mathrm{mol}}=498
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
14.5 (a) From the tabulated data, we are asked to compute \bar{M}_{n}, the number-average molecular weight. This is carried out below.

Molecular wt Range	Mean M_{i}	x_{i}	$x_{i} M_{i}$
$10,000-20,000$	15,000	0.03	450
$20,000-30,000$	25,000	0.09	2250
$30,000-40,000$	35,000	0.15	5250
$40,000-50,000$	45,000	0.25	11,250
$50,000-60,000$	55,000	0.22	12,100
$60,000-70,000$	65,000	0.14	9100
$70,000-80,000$	75,000	0.08	6000
$80,000-90,000$	85,000	0.04	3400
			$\bar{M}_{n}=\sum x_{i} M_{i}=49,800 \mathrm{~g} / \mathrm{mol}$

(b) From the tabulated data, we are asked to compute \bar{M}_{w}, the weight-average molecular weight.

Molecular wt. Range	Mean M_{i}	w_{i}	$w_{i} M_{i}$
$10,000-20,000$	15,000	0.01	150
$20,000-30,000$	25,000	0.04	1000
$30,000-40,000$	35,000	0.11	3850
$40,000-50,000$	45,000	0.23	10,350
$50,000-60,000$	55,000	0.24	13,200
$60,000-70,000$	65,000	0.18	11,700
$70,000-80,000$	75,000	0.12	9000
$80,000-90,000$	85,000	0.07	5950
			$\bar{M}_{w}=\sum w_{i} M_{i}=55,200 \mathrm{~g} / \mathrm{mol}$

(c) Now we are asked to compute the degree of polymerization, which is possible using Equation 14.6. For polytetrafluoroethylene, the repeat unit molecular weight is just
14.4 (a) The repeat unit molecular weight of polypropylene is called for in this portion of the problem. For polypropylene, from Table 14.3, each repeat unit has three carbons and six hydrogens. Thus,

$$
\begin{gathered}
m=3\left(A_{\mathrm{C}}\right)+6\left(A_{\mathrm{H}}\right) \\
=(3)(12.01 \mathrm{~g} / \mathrm{mol})+(6)(1.008 \mathrm{~g} / \mathrm{mol})=42.08 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

(b) We are now asked to compute the number-average molecular weight. Since the degree of polymerization is 15,000, using Equation 14.6

$$
\bar{M}_{n}=(D P) m=(15,000)(42.08 \mathrm{~g} / \mathrm{mol})=631,000 \mathrm{~g} / \mathrm{mol}
$$

14.3 We are asked to compute the degree of polymerization for polystyrene, given that the numberaverage molecular weight is $500,000 \mathrm{~g} / \mathrm{mol}$. The repeat unit molecular weight of polystyrene is just

$$
\begin{gathered}
m=8\left(A_{\mathrm{C}}\right)+8\left(A_{\mathrm{H}}\right) \\
=(8)(12.01 \mathrm{~g} / \mathrm{mol})+(8)(1.008 \mathrm{~g} / \mathrm{mol})=104.14 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Now it is possible to compute the degree of polymerization using Equation 14.6 as

$$
D P=\frac{\bar{M}_{n}}{m}=\frac{500,000 \mathrm{~g} / \mathrm{mol}}{104.14 \mathrm{~g} / \mathrm{mol}}=4800
$$

Molecular Weight

14.2 Repeat unit weights for several polymers are asked for in this problem.
(a) For polytetrafluoroethylene, each repeat unit consists of two carbons and four fluorines (Table 14.3). If A_{C} and A_{F} represent the atomic weights of carbon and fluorine, respectively, then

$$
\begin{gathered}
m=2\left(A_{\mathrm{C}}\right)+4\left(A_{\mathrm{F}}\right) \\
=(2)(12.01 \mathrm{~g} / \mathrm{mol})+(4)(19.00 \mathrm{~g} / \mathrm{mol})=100.02 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

(b) For poly(methyl methacrylate), from Table 14.3, each repeat unit has five carbons, eight hydrogens, and two oxygens. Thus,

$$
\begin{gathered}
m=5\left(A_{\mathrm{C}}\right)+8\left(A_{\mathrm{H}}\right)+2\left(A_{\mathrm{O}}\right) \\
=(5)(12.01 \mathrm{~g} / \mathrm{mol})+(8)(1.008 \mathrm{~g} / \mathrm{mol})+(2)(16.00 \mathrm{~g} / \mathrm{mol})=100.11 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

(c) For nylon 6,6, from Table 14.3, each repeat unit has twelve carbons, twenty-two hydrogens, two nitrogens, and two oxygens. Thus,

$$
\begin{gathered}
m=12\left(A_{\mathrm{C}}\right)+22\left(A_{\mathrm{H}}\right)+2\left(A_{\mathrm{N}}\right)+2\left(A_{\mathrm{O}}\right) \\
=(12)(12.01 \mathrm{~g} / \mathrm{mol})+(22)(1.008 \mathrm{~g} / \mathrm{mol})+(2)(14.01 \mathrm{~g} / \mathrm{mol})+(2)(16.00 \mathrm{~g} / \mathrm{mol}) \\
=226.32 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

(d) For poly(ethylene terephthalate), from Table 14.3, each repeat unit has ten carbons, eight hydrogens, and four oxygens. Thus,

$$
\begin{gathered}
m=10\left(A_{\mathrm{C}}\right)+8\left(A_{\mathrm{H}}\right)+4\left(A_{\mathrm{O}}\right) \\
=(10)(12.01 \mathrm{~g} / \mathrm{mol})+(8)(1.008 \mathrm{~g} / \mathrm{mol})+(4)(16.00 \mathrm{~g} / \mathrm{mol})=192.16 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

14.29 This problem asks that we compute the diffusion flux at 350 K for water in polystyrene. It is first necessary to compute the value of the permeability coefficient at 350 K . The temperature dependence of P_{M} is given in the problem statement, as follows:

$$
P_{M}=P_{M_{0}} \exp \left(-\frac{Q_{p}}{R T}\right)
$$

And, incorporating values provided for the constants $P_{M_{0}}$ and Q_{p}, we get

$$
\begin{gathered}
P_{M}=\left\lfloor 9.0 \times 10^{-5} \frac{\left(\mathrm{~cm}^{3} \mathrm{STP}\right)(\mathrm{cm})}{\mathrm{cm}^{2}-\mathrm{s}-\mathrm{Pa}}\right\rfloor \exp \left[-\frac{42,300 \mathrm{~J} / \mathrm{mol}}{(8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K})(350 \mathrm{~K})}\right] \\
=4.4 \times 10^{-11} \frac{\left(\mathrm{~cm}^{3} \mathrm{STP}\right)(\mathrm{cm})}{\mathrm{cm}^{2}-\mathrm{s}-\mathrm{Pa}}
\end{gathered}
$$

And, using Equation 14.9, the diffusion flux is equal to

$$
\begin{gathered}
J=P_{M} \frac{\Delta P}{\Delta x}=P_{M} \frac{P_{2}-P_{1}}{\Delta x} \\
=4.4 \times 10^{-11} \frac{\left(\mathrm{~cm}^{3} \mathrm{STP}\right)(\mathrm{cm})}{\mathrm{cm}^{2}-\mathrm{s}-\mathrm{Pa}}\left(\frac{20,000 \mathrm{~Pa}-1,000 \mathrm{~Pa}}{3.0 \mathrm{~cm}}\right) \\
=2.8 \times 10^{-7} \frac{\left(\mathrm{~cm}^{3} \mathrm{STP}\right)}{\mathrm{cm}^{2}-\mathrm{s}}
\end{gathered}
$$

14.28 This problem asks us to compute the permeability coefficient for carbon dioxide through high density polyethylene at 325 K given a steady-state permeability situation. It is necessary for us to Equation 14.9 in order to solve this problem. Rearranging this expression and solving for the permeability coefficient gives

$$
P_{M}=\frac{J \Delta x}{\Delta P}=\frac{J \Delta x}{P_{2}-P_{1}}
$$

Taking $P_{1}=2500 \mathrm{kPa}(2,500,000 \mathrm{~Pa})$ and $P_{1}=4000 \mathrm{kPa}(4,000,000 \mathrm{~Pa})$, the permeability coefficient of CO_{2} through HDPE is equal to

$$
\begin{aligned}
P_{M} & =\frac{\left[2.2 \times 10^{-8} \frac{\left(\mathrm{~cm}^{3} \mathrm{STP}\right)}{\mathrm{cm}^{2}-\mathrm{s}}\right](5 \mathrm{~cm})}{(4,000,000 \mathrm{~Pa}-2,500,000 \mathrm{~Pa})} \\
& =0.73 \times 10^{-13} \frac{\left(\mathrm{~cm}^{3} \mathrm{STP}\right)(\mathrm{cm})}{\mathrm{cm}^{2}-\mathrm{s}-\mathrm{Pa}}
\end{aligned}
$$

Diffusion in Polymeric Materials

14.27 This is a permeability problem in which we are asked to compute the diffusion flux of oxygen through a $15-\mathrm{mm}$ thick sheet of low density polyethylene. In order to solve this problem it is necessary to employ Equation 14.9. The permeability coefficient of O_{2} through LDPE is given in Table 14.6 as 2.2×10^{-13} (cm^{3} STP)$\mathrm{cm} / \mathrm{cm}^{2}$-s-Pa. Thus, from Equation 14.9

$$
J=P_{M} \frac{\Delta P}{\Delta x}=P_{M} \frac{P_{2}-P_{1}}{\Delta x}
$$

and taking $P_{1}=150 \mathrm{kPa}(150,000 \mathrm{~Pa})$ and $P_{2}=2000 \mathrm{kPa}(2,000,000 \mathrm{~Pa})$ we get

$$
\begin{gathered}
=\left\lfloor 2.2 \times 10^{-13} \frac{\left(\mathrm{~cm}^{3} \mathrm{STP}\right)(\mathrm{cm})}{\mathrm{cm}^{2}-\mathrm{s}-\mathrm{Pa}}\right\rfloor\left(\frac{2,000,000 \mathrm{~Pa}-150,000 \mathrm{~Pa}}{1.5 \mathrm{~cm}}\right) \\
=2.7 \times 10^{-6} \frac{\left(\mathrm{~cm}^{3} \mathrm{STP}\right)}{\mathrm{cm}^{2}-\mathrm{s}}
\end{gathered}
$$

$$
\begin{gathered}
\rho_{s}=\frac{-\rho_{c} \rho_{a}}{C\left(\rho_{c}-\rho_{a}\right)-\rho_{c}} \\
=\frac{-\left(0.946 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(0.841 \mathrm{~g} / \mathrm{cm}^{3}\right)}{(0.746)\left(0.946 \mathrm{~g} / \mathrm{cm}^{3}-0.841 \mathrm{~g} / \mathrm{cm}^{3}\right)-0.946 \mathrm{~g} / \mathrm{cm}^{3}} \\
=0.917 \mathrm{~g} / \mathrm{cm}^{3}
\end{gathered}
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
14.26 (a) We are asked to compute the densities of totally crystalline and totally amorphous polypropylene (ρ_{C} and ρ_{a} from Equation 14.8). From Equation 14.8 let $C=\frac{\% \text { crystallinity }}{100}$, such that

$$
C=\frac{\rho_{c}\left(\rho_{s}-\rho_{a}\right)}{\rho_{s}\left(\rho_{c}-\rho_{a}\right)}
$$

Rearrangement of this expression leads to

$$
\rho_{c}\left(C \rho_{s}-\rho_{s}\right)+\rho_{c} \rho_{a}-C \rho_{s} \rho_{a}=0
$$

in which ρ_{C} and ρ_{a} are the variables for which solutions are to be found. Since two values of ρ_{S} and C are specified in the problem, two equations may be constructed as follows:

$$
\begin{aligned}
& \rho_{c}\left(C_{1} \rho_{s 1}-\rho_{s 1}\right)+\rho_{c} \rho_{a}-C_{1} \rho_{s 1} \rho_{a}=0 \\
& \rho_{c}\left(C_{2} \rho_{s 2}-\rho_{s 2}\right)+\rho_{c} \rho_{a}-C_{2} \rho_{s 2} \rho_{a}=0
\end{aligned}
$$

In which $\rho_{s 1}=0.904 \mathrm{~g} / \mathrm{cm}^{3}, \rho_{\mathrm{s} 2}=0.895 \mathrm{~g} / \mathrm{cm}^{3}, C_{1}=0.628$, and $C_{2}=0.544$. Solving the above two equations for ρ_{a} and ρ_{c} leads to

$$
\begin{gathered}
\rho_{a}=\frac{\rho_{s 1} \rho_{s 2}\left(C_{1}-C_{2}\right)}{C_{1} \rho_{s 1}-C_{2} \rho_{s 2}} \\
=\frac{\left(0.904 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(0.895 \mathrm{~g} / \mathrm{cm}^{3}\right)(0.628-0.544)}{(0.628)\left(0.904 \mathrm{~g} / \mathrm{cm}^{3}\right)-(0.544)\left(0.895 \mathrm{~g} / \mathrm{cm}^{3}\right)}=0.841 \mathrm{~g} / \mathrm{cm}^{3}
\end{gathered}
$$

And

$$
\begin{gathered}
\rho_{c}=\frac{\rho_{s 1} \rho_{s 2}\left(C_{2}-C_{1}\right)}{\rho_{s 2}\left(C_{2}-1\right)-\rho_{s 1}\left(C_{1}-1\right)} \\
=\frac{\left(0.904 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(0.895 \mathrm{~g} / \mathrm{cm}^{3}\right)(0.544-0.628)}{\left(0.895 \mathrm{~g} / \mathrm{cm}^{3}\right)(0.544-1.0)-\left(0.904 \mathrm{~g} / \mathrm{cm}^{3}\right)(0.628-1.0)}=0.946 \mathrm{~g} / \mathrm{cm}^{3}
\end{gathered}
$$

(b) Now we are asked to determine the density of a specimen having 74.6% crystallinity. Solving for ρ_{S} from Equation 14.8 and substitution for ρ_{a} and ρ_{c} which were computed in part (a) yields

$$
\begin{gathered}
\% \text { crystallinity }=\frac{\rho_{c}\left(\rho_{s}-\rho_{a}\right)}{\rho_{s}\left(\rho_{c}-\rho_{a}\right)} \times 100 \\
=\frac{\left(1.450 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(1.382 \mathrm{~g} / \mathrm{cm}^{3}-1.300 \mathrm{~g} / \mathrm{cm}^{3}\right)}{\left(1.382 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(1.450 \mathrm{~g} / \mathrm{cm}^{3}-1.300 \mathrm{~g} / \mathrm{cm}^{3}\right)} \times 100
\end{gathered}
$$

$$
=57.4 \%
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
14.25 (a) We are asked to compute the densities of totally crystalline and totally amorphous poly(ethylene terephthalate) (ρ_{C} and ρ_{a} from Equation 14.8). From Equation 14.8 let $C=\frac{\% \text { crystallinity }}{100}$, such that

$$
C=\frac{\rho_{c}\left(\rho_{s}-\rho_{a}\right)}{\rho_{s}\left(\rho_{c}-\rho_{a}\right)}
$$

Rearrangement of this expression leads to

$$
\rho_{c}\left(C \rho_{s}-\rho_{s}\right)+\rho_{c} \rho_{a}-C \rho_{s} \rho_{a}=0
$$

in which ρ_{C} and ρ_{a} are the variables for which solutions are to be found. Since two values of ρ_{s} and C are specified in the problem statement, two equations may be constructed as follows:

$$
\begin{aligned}
& \rho_{c}\left(C_{1} \rho_{s 1}-\rho_{s 1}\right)+\rho_{c} \rho_{a}-C_{1} \rho_{s 1} \rho_{a}=0 \\
& \rho_{c}\left(C_{2} \rho_{s 2}-\rho_{s 2}\right)+\rho_{c} \rho_{a}-C_{2} \rho_{s 2} \rho_{a}=0
\end{aligned}
$$

In which $\rho_{s 1}=1.408 \mathrm{~g} / \mathrm{cm}^{3}, \rho_{s 2}=1.343 \mathrm{~g} / \mathrm{cm}^{3}, C_{1}=0.743$, and $C_{2}=0.312$. Solving the above two equations for ρ_{a} and ρ_{C} leads to

$$
\begin{gathered}
\rho_{a}=\frac{\rho_{s 1} \rho_{s 2}\left(C_{1}-C_{2}\right)}{C_{1} \rho_{s 1}-C_{2} \rho_{s 2}} \\
=\frac{\left(1.408 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(1.343 \mathrm{~g} / \mathrm{cm}^{3}\right)(0.743-0.312)}{(0.743)\left(1.408 \mathrm{~g} / \mathrm{cm}^{3}\right)-(0.312)\left(1.343 \mathrm{~g} / \mathrm{cm}^{3}\right)}=1.300 \mathrm{~g} / \mathrm{cm}^{3}
\end{gathered}
$$

And

$$
\begin{gathered}
\rho_{c}=\frac{\rho_{s 1} \rho_{s 2}\left(C_{2}-C_{1}\right)}{\rho_{s 2}\left(C_{2}-1\right)-\rho_{s 1}\left(C_{1}-1\right)} \\
=\frac{\left(1.408 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(1.343 \mathrm{~g} / \mathrm{cm}^{3}\right)(0.312-0.743)}{\left(1.343 \mathrm{~g} / \mathrm{cm}^{3}\right)(0.312-1.0)-\left(1.408 \mathrm{~g} / \mathrm{cm}^{3}\right)(0.743-1.0)}=1.450 \mathrm{~g} / \mathrm{cm}^{3}
\end{gathered}
$$

(b) Now we are to determine the $\%$ crystallinity for $\rho_{S}=1.382 \mathrm{~g} / \mathrm{cm}^{3}$. Again, using Equation 14.8
14.24 For this problem we are given the density of nylon $6,6\left(1.213 \mathrm{~g} / \mathrm{cm}^{3}\right)$, an expression for the volume of its unit cell, and the lattice parameters, and are asked to determine the number of repeat units per unit cell. This computation necessitates the use of Equation 3.5, in which we solve for n. Before this can be carried out we must first calculate V_{C}, the unit cell volume, and A the repeat unit molecular weight. For V_{C}

$$
\begin{gathered}
V_{C}=a b c \sqrt{1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma} \\
=(0.497)(0.547)(1.729) \sqrt{1-0.441-0.054-0.213+2(0.664)(0.232)(0.462)} \\
=0.3098 \mathrm{~nm}^{3}=3.098 \times 10^{-22} \mathrm{~cm}^{3}
\end{gathered}
$$

The repeat unit for nylon 6,6 is shown in Table 14.3, from which the value of A may be determined as follows:

$$
\begin{gathered}
A=12\left(A_{\mathrm{C}}\right)+22\left(A_{\mathrm{H}}\right)+2\left(A_{\mathrm{O}}\right)+2\left(A_{\mathrm{N}}\right) \\
=12(12.01 \mathrm{~g} / \mathrm{mol})+22(1.008 \mathrm{~g} / \mathrm{mol})+2(16.00 \mathrm{~g} / \mathrm{mol})+2(14.01 \mathrm{~g} / \mathrm{mol}) \\
=226.32 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Finally, solving for n from Equation 3.5 leads to

$$
\begin{gathered}
n=\frac{\rho V_{C} N_{\mathrm{A}}}{A} \\
=\frac{\left(1.213 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(3.098 \times 10^{-22} \mathrm{~cm}^{3} / \mathrm{unit} \text { cell }\right)\left(6.023 \times 10^{23} \text { repeat units } / \mathrm{mol}\right)}{226.32 \mathrm{~g} / \mathrm{mol}}
\end{gathered}
$$

$$
\text { = } 1 \text { repeat unit/unit cell }
$$

14.23 For each of four pairs of polymers, we are asked to (1) state whether it is possible to decide which is more likely to crystallize; (2) if so, which is more likely and why; and (3) it is not possible to decide then why.
(a) No, it is not possible to decide for these two polymers. On the basis of tacticity, the isotactic PP is more likely to crystallize than the atactic PVC. On the other hand, with regard to side-group bulkiness, the PVC is more likely to crystallize.
(b) Yes, it is possible to decide for these two copolymers. The linear and syndiotactic polypropylene is more likely to crystallize than crosslinked cis-isoprene since linear polymers are more likely to crystallize than crosslinked ones.
(c) Yes, it is possible to decide for these two polymers. The linear and isotactic polystyrene is more likely to crystallize than network phenol-formaldehyde; network polymers rarely crystallize, whereas isotactic ones crystallize relatively easily.
(d) Yes, it is possible to decide for these two copolymers. The block poly(acrylonitrile-isoprene) copolymer is more likely to crystallize than the graft poly(chloroprene-isobutylene) copolymer. Block copolymers crystallize more easily than graft ones.

Polymer Crystallinity

14.22 The tendency of a polymer to crystallize decreases with increasing molecular weight because as the chains become longer it is more difficult for all regions along adjacent chains to align so as to produce the ordered atomic array.
14.21 For a random poly(styrene-butadiene) copolymer in which $\bar{M}_{n}=350,000 \mathrm{~g} / \mathrm{mol}$ and $D P=5000$, we are asked to compute the fractions of styrene and butadiene repeat units.

From Table 14.5, the styrene repeat unit has eight carbon and eight hydrogen atoms. Thus,

$$
m_{s t}=(8)(12.01 \mathrm{~g} / \mathrm{mol})+(8)(1.008 \mathrm{~g} / \mathrm{mol})=104.14 \mathrm{~g} / \mathrm{mol}
$$

Also, from Table 14.5, the butadiene repeat unit has four carbon and six hydrogen atoms, and

$$
m_{b u}=(4)(12.01 \mathrm{~g} / \mathrm{mol})+(6)(1.008 \mathrm{~g} / \mathrm{mol})=54.09 \mathrm{~g} / \mathrm{mol}
$$

From Equation 14.7

$$
\bar{m}=f_{s t} m_{s t}+f_{b u} m_{b u}
$$

Now, let $x=f_{s t}$, such that

$$
\bar{m}=104.14 x+(54.09)(1-x)
$$

since $f_{s t}+f_{b u}=1$. Also, from Equation 14.6

$$
D P=\frac{\bar{M}_{n}}{\bar{m}}
$$

Or

$$
5000=\frac{350,000 \mathrm{~g} / \mathrm{mol}}{[104.14 x+54.09(1-x)] \mathrm{g} / \mathrm{mol}}
$$

Solving for x leads to $x=f_{s t}=f($ styrene $)=0.32$. Also,

$$
f(\text { butadiene })=1-x=1-0.32=0.68
$$

14.20 For a copolymer consisting of $35 \mathrm{wt} \%$ ethylene and $65 \mathrm{wt} \%$ propylene, we are asked to determine the fraction of both repeat unit types.

In 100 g of this material, there are 35 g of ethylene and 65 g of propylene. The ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ molecular weight is

$$
\begin{gathered}
m(\text { ethylene })=2\left(A_{\mathrm{C}}\right)+4\left(A_{\mathrm{H}}\right) \\
=(2)(12.01 \mathrm{~g} / \mathrm{mol})+(4)(1.008 \mathrm{~g} / \mathrm{mol})=28.05 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

The propylene $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$ molecular weight is

$$
\begin{gathered}
m(\text { propylene })=3\left(A_{\mathrm{C}}\right)+6\left(A_{\mathrm{H}}\right) \\
=(3)(12.01 \mathrm{~g} / \mathrm{mol})+(6)(1.008 \mathrm{~g} / \mathrm{mol})=42.08 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Therefore, in 100 g of this material, there are

$$
\frac{35 \mathrm{~g}}{28.05 \mathrm{~g} / \mathrm{mol}}=1.25 \mathrm{~mol} \text { of ethylene }
$$

and

$$
\frac{65 \mathrm{~g}}{42.08 \mathrm{~g} / \mathrm{mol}}=1.54 \mathrm{~mol} \text { of propylene }
$$

Thus, the fraction of the ethylene repeat unit, f (ethylene), is just

$$
f(\text { ethylene })=\frac{1.25 \mathrm{~mol}}{1.25 \mathrm{~mol}+1.54 \mathrm{~mol}}=0.45
$$

Likewise,

$$
f(\text { propylene })=\frac{1.54 \mathrm{~mol}}{1.25 \mathrm{~mol}+1.54 \mathrm{~mol}}=0.55
$$

