
Chapter 16

Transport-Level Security

Web Security

• The World Wide Web is fundamentally a client/server application running
over the Internet and widely used by businesses, government agencies,
and many individuals. But the Internet and the Web are extremely
vulnerable .

• Number of security threats faced when using the Web in terms of passive
and active attacks.
- Passive attacks including eavesdropping on network traffic between browser

and server and gaining access to information on a Web site that is supposed to
be restricted;

- Active attacks including impersonating another user, altering messages in transit
between client and server, and altering information on a Web site.

• These types can be classified according to:
– Integrity
– Confidentiality
– Denial of Service
– Authentication

• The web needs added security mechanisms to address these threats.

Web Traffic Security Approaches

(a) IP security (IPsec)

The advantages:
– It is transparent to end users and applications and

provides a general-purpose solution.

– It includes a filtering capability so that selected
traffic need incur the overhead of IPsec processing.

(b) Secure Sockets Layer/Transport Layer Security (SSL/TLS)

• Part of the underlying protocol and therefore be
transparent to applications.

• Embedded into packages (e.g. Browsers)

 Explorer browsers come with SSL & Most Web servers
have implemented it.

(c) Application-specific security services:

• Embedded within particular application.

The advantage:

– The service can be adapted to the specific needs of a given
application.

SSL (Secure Socket Layer) and TLS (Transport Layer Security)

• Most widely used Web security mechanism

[implemented at the Transport layer].

• SSL is designed to make use of TCP to provide a

reliable end-to-end secure service.

• SSL is not a single protocol but rather two layers
of protocol.

SSL Architecture

• SSL Record Protocol provides basic security services to various
higher-layer protocols.

• Hypertext Transfer Protocol (HTTP), provides transfer service for
Web client/server interaction, can operate on top of SSL.

• Three higher-layer protocols are defined as part of SSL and used
in the management of SSL exchanges :

1. Handshake Protocol,
2. Change Cipher Spec Protocol
3. Alert Protocol.

SSL Concepts

• SSL connection

– A connection is a transport that provides a suitable type of
service, such connections are transient, peer-to-peer
relationships, associated with one SSL session.

• SSL session

– An association between client & server
– Created by the Handshake Protocol
– Sessions define a set of cryptographic security parameters,

which can be shared among multiple connections.
– Sessions are used to avoid the expensive negotiation of new

security parameters for each connection.

SSL Architecture

• Between any pair of parties, with multiple secure connections
[applications such as HTTP on client and server].

• There are a number of states associated with each session.

• Once a session is established, there is a current operating state for both
read and write (i.e., receive and send).

• In addition, during the Handshake Protocol, pending read and write states
are created.

• Upon successful conclusion of the Handshake Protocol, the pending states
become the current states.

• A session state and a connection state are defined by sets of parameters.

SSL Record Protocol

• The SSL Record Protocol provides two services for SSL
connections:

• Confidentiality: Handshake Protocol defines a shared secret key
that is used for symmetric encryption of SSL payloads.

• Message Integrity: Handshake Protocol defines a shared secret
key that is used to form a message authentication code (MAC).

• Fragmentation: Each upper-layer message is fragmented into
blocks of 214 bytes (16384 bytes) or less.

• Compression (optionally): Compression must be lossless and
may not increase the content length by more than 1024 bytes.

• Message Authentication Code (MAC): over the compressed
data. For this purpose, a shared secret key is used.

SSL Record Protocol Operation

• The Record Protocol takes an application message to
be transmitted, fragments the data into blocks

• Optionally compresses the data,

• Apply a Message Authentication Code (MAC),

• Encrypts (symmetric algorithms),

• Append SSL record header.

• Transmits the resulting unit in a TCP segment.

• Received data are decrypted, verified, decompressed,
and reassembled and then delivered to higher-layer
applications.

SSL Change Cipher Spec Protocol

• The simplest one of the three SSL-specific protocols
that use the SSL Record Protocol.

• A single message [Single byte with the value 1].

• The purpose of this message is to cause the pending
state to be copied into the current state, which
updates the cipher suite to be used on this
connection.

SSL Alert Protocol

• Convey SSL-related alerts to the peer entity.

• Alert messages are compressed and encrypted.

• Each message consists of two bytes.
– The first byte takes the value warning (1) or fatal (2) to convey the

severity of the message.
• If the level is fatal,

– SSL immediately terminates the connection.

– Other connections in same session continue.

– No new connections allowed.

– The second byte contains a code that indicates the specific alert.

Handshake Protocol

• Most complex part of SSL

• Allows server and client to

– Authenticate each other

– negotiate an encryption, MAC algorithm and cryptographic keys to protect data sent in an SSL record.

Consists of 4 phases:

• PHASE 1. ESTABLISH SECURITY CAPABILITIES

– Used by the client to initiate a logical connection and to establish the security capabilities that will be
associated with it.

• PHASE 2. SERVER AUTHENTICATION AND KEY EXCHANGE

– The server send its certificate if it needs to be authenticated.

•PHASE 3. CLIENT AUTHENTICATION AND KEY EXCHANGE

– The client should verify that the server provided a valid certificate and check that the server_hello
parameters are acceptable

• PHASE 4. FINISH

– Completes the setting up of a secure connection.

– The client sends a change_cipher_spec message and copies the pending CipherSpec into the current
CipherSpec.

– The finished message verifies that the key exchange and authentication processes were successful.

Cryptographic Computations
(1) Creation of a shared master secret by means of the key exchange.

– The shared master secret is a one-time 48-byte value (384 bits) for this
session

– The creation is in two stages:
• First, a pre_master_secret is exchanged. Using either RSA or Diffie-Hellman
• Second, the master_secret is calculated by both parties. By hashing the relevant

information

(2) Generation of cryptographic parameters from the master secret.

– Client write MAC secret, a server write MAC secret, a client write key, a
server write key, a client write IV, and a server write IV which are
generated from the master secret in that order

– These parameters are generated by hashing master secret into a sequence
of secure bytes of sufficient length for all needed parameters.

TLS (Transport Layer Security)

• TLS is IETF standard RFC 5246 similar to SSL V.3

• Minor differences
– Record format version number

– Using HMAC for MAC

– A pseudo-random function expands secrets
• based on HMAC using SHA-1 or MD5

– Additional alert codes

– Some changes in supported ciphers

– Changes in certificate types & negotiations

– Changes in crypto computations & padding

HTTPS

 HTTPS (HTTP over SSL)
• Combination of HTTP & SSL/TLS to secure communications

between browser & server
• documented in RFC2818

• no fundamental change using either SSL or TLS

• The HTTPS capability is built into all modern Web browsers

 Using https:// URL rather than http://
• Port 443 rather than 80

 Encrypts
• URL, document contents, form data, cookies, HTTP headers

 Protocol for secure network communications

 Designed to be simple & inexpensive

 SSH1 provided secure remote logon facility

 Replace TELNET & other insecure schemes

 Also has more general client/server capability

 SSH2 fixes a number of security flaws

 SSH clients & servers are widely available

Secure Shell (SSH)

SSH Protocol Stack

SSH Transport Layer Protocol

 Server Authentication occurs at transport layer,
based on server/host key pair(s)
 Server authentication requires clients to know host

keys in advance

 Packet Exchange
 Establish TCP connection

 Exchange data
• identification string exchange, algorithm negotiation, key

exchange, end of key exchange, service request

 Using specified packet format

The SSH Transport Layer packet exchange steps:

1. The client sending a packet with an identification string.

2. Algorithm negotiation: Each side sends an SSH_MSG_KEXINIT containing lists

of supported algorithms, one list for each type of cryptographic algorithm, in
the order of preference to the sender. For each category, the algorithm chosen
is the first algorithm on the client's list that is also supported by the server.

3. Key exchange: Only two versions of Diffie-Hellman key exchange are specified.

As a result of these steps, the two sides now share a master key K. In addition,
the server has been authenticated to the client.

4. End of key exchange: By the exchange of SSH_MSG_NEWKEYS packets.

5. Service request:
– The client sends an SSH_MSG_SERVICE_REQUEST packet to request either the User

Authentication or the Connection Protocol.
– All data is exchanged as the payload of an SSH Transport Layer packet, protected by

encryption and MAC.

SSH User Authentication Protocol

• Authenticates client to server

• Three message types:
– SSH_MSG_USERAUTH_REQUEST: Authentication requests from the client

– If the server rejects the authentication request, or accepts the request but
requires one or more additional authentication methods, the server sends
a SSH_MSG_USERAUTH_FAILURE

– If the server accepts authentication then it sends a single byte message,
SSH_MSG_USERAUTH_SUCCESS.

• The server may require one or more of the following authentication methods:

– Public-key: client sends a message to the server that contains the client's
public key, with the message signed by the client's private key

– Password: client sends a message containing a plaintext password,
protected by TLS encryption

– Host-based: authentication is performed on the client's host, rather than
the client itself

SSH Connection
Protocol Exchange

Port Forwarding

• On each of the client workstations in Building #1 (workstation 10.1.1.7), you
install an SSH client. On the machine in Building #2 that runs the server for
your application, you install an SSH server.

• You configure SSH client with the following client-to-server port forwarding
rule: for each connection that comes on interface 127.0.0.1 and port 999,
forward that connection to SSH server, and request SSH server to forward that
connection to host 127.0.0.1 (relative to the server), port 123.

• Now, your application client doesn't connect to the server directly. Rather, it
connects to the SSH client, which encrypts all data before transmission.

• SSH client forwards the encrypted data to SSH server, which decrypts it and
forwards it to your application server. Data sent by the server application is
similarly encrypted by the SSH server and forwarded back to the client.

