Chapter 16

Transport-Level Security

Web Security

The World Wide Web is fundamentally a client/server application running
over the Internet and widely used by businesses, government agencies,
and many individuals. But the Internet and the Web are extremely
vulnerable .

Number of security threats faced when using the Web in terms of passive
and active attacks.

- Passive attacks including eavesdropping on network traffic between browser
and server and gaining access to information on a Web site that is supposed to
be restricted;

- Active attacks including impersonating another user, altering messages in transit
between client and server, and altering information on a Web site.

These types can be classified according to:
— Integrity
— Confidentiality
— Denial of Service
— Authentication

The web needs added security mechanisms to address these threats.

Threats

Consequences

Countermeasures

Integrity

Modification of user data
Trojan horse browser
Modification of memory

Modification of messapge
traffic in transit

Loss of information

Compromise of machine

Vulnerabilty to all other
threats

Cryptographic
checksums

Conflidentiality

Eavesdropping on the net
Theft of info from server
Theft of data from client

Info about network
configuration

Info about which client
talks to server

Loss of information
Loss of privacy

Encryption, Web
proxies

Demial of
Service

Killing of user threads

Flooding machine with
bogus requests

Filling up disk or memory

Isolating machine by DINS
attacks

Disruptive
Annoying

Prevent user from getting
work done

Difficult to prevent

Auihentication

Impersonation of legitimate
users

Data forgery

Misrepresentation of user

Belief that false information
is valid

Cryptographic
techniques

Web Traffic Security Approaches

HTTP FTP SMTP SMIME
HTTP FTP SMTP S5L or TLS Kerberos| SMTP | HTTP
TCP TCP vpe TCP
IPIPSec 13 P

(@) Metwork Level {b] Transport Level (e) Application Level

(a) IP security (IPsec)

HTTP FTF SMTP

TCP

IP/TPSec

(a) MNetwork level

The advantages:

— It is transparent to end users and applications and
provides a general-purpose solution.

— It includes a filtering capability so that selected
traffic need incur the overhead of IPsec processing.

(b) Secure Sockets Layer/Transport Layer Security (SSL/TLS)

HTTFP FTP SMTPFP

S5L or TLS

TCP

P

b} Transport level

 Part of the underlying protocol and therefore be
transparent to applications.

* Embedded into packages (e.g. Browsers)

Explorer browsers come with SSL & Most Web servers
have implemented it.

(c) Application-specific security services:

SMIME

Kerberos | SMTF | HTTP

UDP TCP

[

(c) Application level

 Embedded within particular application.

The advantage:

— The service can be adapted to the specific needs of a given
application.

SSL (Secure Socket Layer) and TLS (Transport Layer Security)

« Most widely used Web security mechanism
[Implemented at the Transport layer].

« SSL is designed to make use of TCP to provide a
reliable end-to-end secure service.

« SSL is not a single protocol but rather two layers
of protocol.

SSL Architecture

S5L S5L Change
Handshake | Cipher Spec
Protocol Protocol

S5L Alert

Protocol L

S5L Record Protocol

TCP

IP

* SSL Record Protocol provides basic security services to various
higher-layer protocols.

* Hypertext Transfer Protocol (HTTP), provides transfer service for
Web client/server interaction, can operate on top of SSL.

* Three higher-layer protocols are defined as part of SSL and used
in the management of SSL exchanges :

1. Handshake Protocol,
2. Change Cipher Spec Protocol
3. Alert Protocol.

SSL Concepts

e SSL connection

— A connection is a transport that provides a suitable type of
service, such connections are transient, peer-to-peer
relationships, associated with one SSL session.

e SSL session
— An association between client & server
— Created by the Handshake Protocol

— Sessions define a set of cryptographic security parameters,
which can be shared among multiple connections.

— Sessions are used to avoid the expensive negotiation of new
security parameters for each connection.

SSL Architecture

Between any pair of parties, with multiple secure connections
[applications such as HTTP on client and server].

There are a number of states associated with each session.

Once a session is established, there is a current operating state for both
read and write (i.e., receive and send).

In addition, during the Handshake Protocol, pending read and write states
are created.

Upon successful conclusion of the Handshake Protocol, the pending states
become the current states.

A session state and a connection state are defined by sets of parameters.

SSL Record Protocol

 The SSL Record Protocol provides two services for SSL
connections:

e Confidentiality: Handshake Protocol defines a shared secret key
that is used for symmetric encryption of SSL payloads.

e Message Integrity: Handshake Protocol defines a shared secret
key that is used to form a message authentication code (MAC).

SSL Record Protocol Operation

Application data

T ¥

Fragment

l o
Compress W/L//A

N

Add MAC V///{/A:&
Encrypt

L |
Append S5L
record header

Fragmentation: Each upper-layer message is fragmented into
blocks of 2% bytes (16384 bytes) or less.

Compression (optionally): Compression must be lossless and
may not increase the content length by more than 1024 bytes.

Message Authentication Code (MAC): over the compressed
data. For this purpose, a shared secret key is used.

The Record Protocol takes an application message to
be transmitted, fragments the data into blocks

Optionally compresses the data,

Apply a Message Authentication Code (MAC),
Encrypts (symmetric algorithms),

Append SSL record header.

Transmits the resulting unit in a TCP segment.

Received data are decrypted, verified, decompressed,
and reassembled and then delivered to higher-layer
applications.

SSL Change Cipher Spec Protocol

 The simplest one of the three SSL-specific protocols
that use the SSL Record Protocol.

* Asingle message [Single byte with the value 1].

* The purpose of this message is to cause the pending
state to be copied into the current state, which
updates the cipher suite to be used on this
connection.

1 byie

1]

(a) Change Cipher Spec Protocol

SSL Alert Protocol

 Convey SSlL-related alerts to the peer entity.
* Alert messages are compressed and encrypted.

 Each message consists of two bytes.

— The first byte takes the value warning (1) or fatal (2) to convey the
severity of the message.

* If the level is fatal,
— SSLimmediately terminates the connection.
— Other connections in same session continue.
— No new connections allowed.

— The second byte contains a code that indicates the specific alert.

1 byte 1 byte

Level | Alert

(b Alert Protocol

Handshake Protocol

1 bvte 3 bytes =) bytes

Type Length Content

* Most complex part of SSL

* Allows server and client to
) {c) Handshake Protocol
— Authenticate each other

— negotiate an encryption, MAC algorithm and cryptographic keys to protect data sent in an SSL record.

Consists of 4 phases:

* PHASE 1. ESTABLISH SECURITY CAPABILITIES

— Used by the client to initiate a logical connection and to establish the security capabilities that will be
associated with it.

* PHASE 2. SERVER AUTHENTICATION AND KEY EXCHANGE
— The server send its certificate if it needs to be authenticated.

*PHASE 3. CLIENT AUTHENTICATION AND KEY EXCHANGE
— The client should verify that the server provided a valid certificate and check that the server_hello
parameters are acceptable
* PHASE 4. FINISH
— Completes the setting up of a secure connection.

— The client sends a change_cipher_spec message and copies the pending CipherSpec into the current
CipherSpec.

— The finished message verifies that the key exchange and authentication processes were successful.

T

Client

Server

E!iieur_heuo
y

Phase 1

Establish security capabilities, including
protoco] version, session 1D, cipher suite,
compression method, and initial random
num bers.

4’//"-'\:Etﬁ'ﬁ.l:ﬂlM
hange

SmﬂFkEFFEEC

certificate < eque
_done

gervel el

Phase 2

Server may send certificate, key exchange,
and request certificate. Server signals end
of hello message phase.

“

W‘
e

WA

Phase 3

Client sends certificate if requested. Client
sends key exchange. Client may send
certificate verification.

chﬁﬂge_ ':iph‘l?,r pec

\

pange ciphe =P
c _
‘y

Phasze 4
Change cipher suite and finizh
handshake protocol.

Nowe: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

Cryptographic Computations

(1) Creation of a shared master secret by means of the key exchange.

— The shared master secret is a one-time 48-byte value (384 bits) for this
session

— The creation is in two stages:
* First, a pre_master_secret is exchanged. Using either RSA or Diffie-Hellman

* Second, the master_secret is calculated by both parties. By hashing the relevant
information

(2) Generation of cryptographic parameters from the master secret.

— Client write MAC secret, a server write MAC secret, a client write key, a
server write key, a client write IV, and a server write IV which are
generated from the master secret in that order

— These parameters are generated by hashing master secret into a sequence
of secure bytes of sufficient length for all needed parameters.

TLS (Transport Layer Security)

e TLSis IETF standard RFC 5246 similar to SSL V.3

* Minor differences
— Record format version number
— Using HMAC for MAC

— A pseudo-random function expands secrets
* based on HMAC using SHA-1 or MD5

— Additional alert codes

— Some changes in supported ciphers

— Changes in certificate types & negotiations
— Changes in crypto computations & padding

HTTPS

HTTPS (HTTP over SSL)

 Combination of HTTP & SSL/TLS to secure communications
between browser & server

documented in RFC2818
no fundamental change using either SSL or TLS

* The HTTPS capability is built into all modern Web browsers

Using https:// URL rather than http://
* Port 443 rather than 80

Encrypts
 URL, document contents, form data, cookies, HTTP headers

HTTPS Use

* Comnection initiation (The client mitiates a connection to the server on the
appropriate port)
* TLS handshake then HTTP request(s)
* AJl HTTP data 1s to be sent as TLS application data

¢ Connection closure
* An HTTP client or server can indicate the closing of a connection by
including m an HTTP record: “Connection: close™.
This indicates that the connection will be closed after this record 1s
delivered
* The closure of an HTTPS connection requires that TLS close the connection
with the peer TLS entity on the remote side. which will involve closing the
underlying TCP connection.
* At the TLS level. the proper way to close a connection 1s for each side to use
the TLS alert protocol to send a close notify alert.

¢ (Can then close TCP connection

Secure Shell (SSH)

Protocol for secure network communications

Designed to be simple & inexpensive

SSH1 provided secure remote logon facility
Replace TELNET & other insecure schemes

Also has more general client/server capability
SSH2 fixes a number of security flaws
SSH clients & servers are widely available

SSH Protocol Stack

SSH User SSH
Authentication Protocol | Connection Protocol

Authenticates the client-side | Multiplexes the encrypted

e e tunnel into several logical
channels.
SSH Transport Layer Protocol

Provides server authentication, confidentiality, and integrity.
It may optionally also provide compression.

TCP

Transmission control protocol provides reliable, connection-
oriented end-to-end delivery.

IP
Internet protocol provides datagram delivery across
multiple networks.

SSH Transport Layer Protocol

Server Authentication occurs at transport layer,
based on server/host key pair(s)

Server authentication requires clients to know host
keys in advance

Packet Exchange
Establish TCP connection

Exchange data

identification string exchange, algorithm negotiation, key
exchange, end of key exchange, service request

Using specified packet format

The SSH Transport Layer packet exchange steps:
1. The client sending a packet with an identification string.

2. Algorithm negotiation: Each side sends an SSH_MSG_KEXINIT containing lists
of supported algorithms, one list for each type of cryptographic algorithm, in
the order of preference to the sender. For each category, the algorithm chosen
is the first algorithm on the client's list that is also supported by the server.

3. Key exchange: Only two versions of Diffie-Hellman key exchange are specified.
As a result of these steps, the two sides now share a master key K. In addition,
the server has been authenticated to the client.

4. End of key exchange: By the exchange of SSH_MSG_NEWKEYS packets.

5. Service request:

— The client sends an SSH_MSG_SERVICE_REQUEST packet to request either the User
Authentication or the Connection Protocol.

— All data is exchanged as the payload of an SSH Transport Layer packet, protected by
encryption and MAC.

SSH User Authentication Protocol

 Authenticates client to server

* Three message types:

— SSH_MSG_USERAUTH_REQUEST: Authentication requests from the client

— |If the server rejects the authentication request, or accepts the request but
requires one or more additional authentication methods, the server sends
a SSH_MSG_USERAUTH_FAILURE

— |If the server accepts authentication then it sends a single byte message,
SSH_MSG_USERAUTH_SUCCESS.

* The server may require one or more of the following authentication methods:

— Public-key: client sends a message to the server that contains the client's
public key, with the message signed by the client's private key

— Password: client sends a message containing a plaintext password,
protected by TLS encryption

— Host-based: authentication is performed on the client's host, rather than
the client itself

SSH Connection Protocol

Runs on top of the SSH Transport Layer Protocol

Assumes secure authentication connection referred to as a tunnel

Used for multiple logical channels (Either side may open a channel. For each channel.
each side associates a unique channel number)

* SSH communications use separate channels
* cither side can open with unique 1d number

¢ flow controlled

The life of a channel progresses through three stages:

opening a channel. data transfer, closing a channel

Four channel types :
Session: remote execution of a program
X11: X Window System display traffic
torwarded-tepip: remote port forwarding (Remote TCP to local TCP)
direct-tepip: local port forwarding (Local TCP to remote TCP)

SSH Connection
Protocol Exchange

Client
Server

-

Establish Authenticated Transport Layer Connection

S8H_MSG_CHANNEL_OPEN

Open a
channel

SH_MSG_CHANNEL_OPEN_CONFIRMATION

i

SSH_MSG_CHANNEL_DATA

Data {
transfer

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

Close a

SSH_MSG_CHANNEL_DATA

S5H_MSG_CHANNEL_CLOSE

channel

Port Forwarding

* One of the most useful features of SSH 1s port forwarding / tunneling.

e It convert insecure TCP connection into a secure SSH connection

* SSH Transport Layer Protocol establishes a TCP connection between SSH chient &
SEIver

* client tratfic redirected to local SSH., travels via munnel. then remote SSH delivers to
Server

* supports two types of port forwarding
* local forwarding — hijacks selected traffic
allows the client to set up a "hijacker” process. This will intercept selected

application level traffic and redirect it from an unsecured TCP connection
to a secure SSH tunnel. This could be used to secure the traffic from an

email client on your desktop that gets email from the mail server via POP,
the Post Office Protocol

* remote forwarding — client acts for server
the user's SSH client acts on the server's behalf. The client receives
traffic with a given destination port number, places the traffic on the

correct port and sends it to the destination the user chooses. This could
be used to securely access a server at work from a home computer.

S55HZ session

Insecure
rietwork,

Host 10.1.1.7 Host 10.2.2.3

. [55H2 client | [5sHz server | !
! (or server) | | | (o client) -
L i

: Listens on interface Forwards to !
! 127.0.0.1, port 999 127.0.0.1, port 123 !
! : : |
E TCP Connects to host Listens on interface TCP |
i

clierit 127.0.0.1, pork 999 0.0.0.0, pork 123
1

Port Forwarding

On each of the client workstations in Building #1 (workstation 10.1.1.7), you
install an SSH client. On the machine in Building #2 that runs the server for
your application, you install an SSH server.

You configure SSH client with the following client-to-server port forwarding
rule: for each connection that comes on interface 127.0.0.1 and port 999,
forward that connection to SSH server, and request SSH server to forward that
connection to host 127.0.0.1 (relative to the server), port 123.

Now, your application client doesn't connect to the server directly. Rather, it
connects to the SSH client, which encrypts all data before transmission.

SSH client forwards the encrypted data to SSH server, which decrypts it and
forwards it to your application server. Data sent by the server application is
similarly encrypted by the SSH server and forwarded back to the client.

