324 Stat
 Lecture Notes

(1) Probability

(Chapter 2 of the book pg 35-7I)

Definitions:

Sample Space:

Is the set of all possible outcomes of a statistical experiment, which is denoted by the symbol $\mathrm{S} \bullet$

Notes:

-Each outcome in a sample space is called an element or a member or a sample point.

- S is called the sure event

Consider the experiment of tossing a die. If we are interested in the number that shows on the top face, the sample space would be:
$S=\{1,2,3,4,5,6\}$
If we are interested only in whether the number is even or odd, the sample space is simply:
$S=\{$ even, odd $\}$

EX (2):

The sample space of tossing a coin 3 times:
S= \{HHH, HHT,THH, HTH, HTT, TTH,THT,TTT\}.

Note:

- you can use the tree diagram on pg 37 to find S in this example

EX (3):

$$
S=\{X \mid X+2=0\}=\{-2\} .
$$

See Ex 2.3 pg 37

Events:

An event A is a subset of a sample space \bullet

For instance, when a die is tossed, then the sample space is $\{1,2,3,4,5,6\}$. If the event \mathbf{A} is concerned with the elements that divisible by 3 such that
$\mathrm{A}=\{3,6\}$, then $A \subset S$.

EX (4):

The set which contains no elements at all is called the null set or the impossible event denoted by $\boldsymbol{\Phi}$.
Ex
$B=\{X \mid X$ is an even factor of 7$\}$, then $B=\Phi=\{ \}$

Note:

$\Phi \subset \mathrm{S}, \mathrm{S} \subset \mathrm{S}$

Complement of an event A :

The complement of an event \mathbf{A} with respect to \mathbf{S} is the set of all elements of \mathbf{S} that not in \mathbf{A} denoted by

$$
A^{\prime} \text { or } A^{C} \text { or } \bar{A} .
$$

See Ex 2.6 pg 39

EX (5):

$S=\{1,2,3,4,5,6\}$.

Let \mathbf{B} the event that has the number which greater than $\mathbf{3}$
such that $\mathbf{B}=\{4,5,6\}$, then $B^{\prime}=\{1,2,3\}$.

Intersection:

The intersection of two events \mathbf{A} and \mathbf{B} denoted by $A \cap B$
is the event containing all elements that are common to \mathbf{A} and \mathbf{B}.

EX (6):

Let $\mathrm{M}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}, \mathrm{r}, \mathrm{s}\}$ and $\mathrm{N}=\{\mathrm{r}, \mathrm{s}, \mathrm{t}\}$, then $M \cap N=\{\mathrm{r}, \mathrm{s}\}$

Let $\mathbf{S}=\{1,2,3,4,5,6\}, \mathbf{A}=\{1,2,3\}, \mathbf{B}=\{3,6\}$,
Then $A \cap B=\{3\}$.
See Ex 2.7 pg 39

Mutually Exclusive (Disjoint) Events:

Two events \mathbf{A} and \mathbf{B} are mutually exclusive (disjoint)
if and only if $A \cap B=\Phi$,
that is if \mathbf{A} and \mathbf{B} have no elements in common.

```
See Ex 2.8 pg 40
```


EX (7):

$$
\begin{gathered}
\mathbf{S}=\{1,2,3,4,5,6\}, \\
\mathbf{A}=\{1,3,5\}, \mathbf{B}=\{2,4,6\}, \\
\text { then } A \cap B=\Phi
\end{gathered}
$$

A and B are mutually exclusive or disjoint.

Union:

The union of the two events \mathbf{A} and \mathbf{B} denoted by

$$
A \cup B
$$

which is the event containing all the elements that belong to \mathbf{A} or \mathbf{B} or bothe
that is $A \cup B$ occurs if at least one of A or B occurs.

EX (8):

Let $M=\{X \mid 3<X<9\} \quad N=\{y \mid 5<y<12\}$
Then $\quad M \cup N=\{z \mid 3<z<12\}$.

EX (9):

Let $A=\{a, b, c\}, B=\{b, c, d, e\}$
then $A \cup B=\{a, b, c, d, e\}$
See Ex 2.11 and 2.12 pg 40

1.7 Definition:

If A contains B, then B is called a subset of A,

 that is $B \subset A$.$$
\begin{gathered}
\underline{\mathbf{E X ~ (1 0) :}} \\
\mathbf{A}=\{1,2,3,4\}, \mathbf{B}=\{2,3\} . \because B \subset A \\
\therefore A \cap B=B, A \cup B=A,(A \cap B)^{C}=B^{C},(A \cup B)^{C}=(A)^{c}
\end{gathered}
$$

2.3 Counting Sampl Points (pg 44):

If an operation can be performed in ($\mathbf{n}_{\mathbf{1}}$) ways and if
for each of these a second operation can be performed in $\left(\mathbf{n}_{2}\right)$ ways, then the two operations can be performed together in ($\mathbf{n}_{1} \mathbf{n}_{2}$) ways.

EX (11):

How many sample points are in the sample space when a pair of dice is thrown once?

Solution:

The first die can land in any one of $\mathbf{n}_{1}=6$ ways. For each of these 6 ways the second die can also land in $\mathbf{n}_{2}=6$ ways.

Therefore, the pair of dice can land in $\mathbf{n}_{1} \mathbf{n}_{2}=(6) \times(6)=\mathbf{3 6}$ possible ways.

EX (12):

How many lunches consisting of a soup, sandwich, dessert and a drink are possible if we can select from 4 soups, 3 kinds of sandwiches, 5 desserts and 4 drinks?

Solution:

Since $\mathbf{n}_{\mathbf{1}}=4, \mathbf{n}_{\mathbf{2}}=3, \mathbf{n}_{\mathbf{3}}=5, \mathbf{n}_{4}=4$, then $\left(\mathrm{n}_{1}\right)\left(\mathrm{n}_{2}\right)\left(\mathrm{n}_{3}\right)\left(\mathrm{n}_{4}\right)=$ (4) (3)
(5) $(4)=240$ different ways to choose lunch.

See Ex 2.15 and 2.16 pg 46

EX (13):

How many even three - digit numbers can be formed from the digits 1,2,5,6 and 9 if each digit can be used only once (without replacement

3	4	2

$$
\left(n_{1}\right)\left(n_{2}\right)\left(n_{3}\right)=(2)(4)(3)=24 \text { even three }- \text { digit numbers. }
$$

Ex 2.17 pg 46

How many even four digit number can be formed from the digits $0,1,2,5,6,9$ if each digit can be used only once?

3	4	5	I	or	4	3	4	2	
	e					P			

$\left(n_{1}\right)\left(n_{2}\right)\left(n_{3}\right)\left(n_{4}\right)+\left(n_{1}\right)\left(n_{2}\right)\left(n_{3}\right)\left(n_{4}\right)=$
$(1 \times 5 \times 4 \times 3)+(2 \times 4 \times 4 \times 3)=60+96=165$

Definition:

A permutation is an arrangement of all or part of a set of objects $■$

- The number of permutations of \mathbf{n} distinct objects is \mathbf{n} !.

EX (14):

How many words can be obtained using the three letters: $\mathrm{a}, \mathrm{b}, \mathrm{c}$

Solution:

$$
n=3 \text {, then } n!=3!=6
$$

In general n distinct objects can be arranged in

$$
n!=n(n-1)(n-2) \ldots 3 \times 2 \times 1 \text { ways. }
$$

By definition $1!=0!=1$

Permutations:

The number of permutations of \mathbf{n} distinct objects taken \mathbf{r} at a time is given by:

$$
\begin{equation*}
p_{r}^{n}=\frac{n!}{(n-r)!} \text { where } n \geq r \tag{1}
\end{equation*}
$$

Where:

1. the order is important.
2. the chosen is without replacement

$\operatorname{EX}(15):$

A president, treasurer and secretary all different are to be
chosen from a club consisting of 10 - people. How many
different choices of officers are possible?

Solution:

$$
p_{3}^{10}=\frac{10!}{7!}=720
$$

■ See Ex 2.18 pg 48

EX (10):

How many ways can a local chapter of the American Chemical
Society Schedules 3 speakers for 3 different meetings if they are
available on any of 5 possible dates?

Solution:

The total number of possible schedules is:

$$
p_{3}^{5}=\frac{5!}{2!}=\frac{120}{2}=60
$$

Theorem:

The number of permutations of n distinct tobjects arranged in

a. a row is n !
b. a circle is (n-1)!

EX(17):

How many ways can $\mathbf{3}$ Arabic books, 2 Math books and 1
chemistry book arranged:

1. in a book shelf ?
2. in a rounded table?

Solution:

The number of books is $n=6$ books, then:

$$
\begin{aligned}
& 1 . n \mid=6=0:=720 \\
& \text { 2. }(n \cdot 1) \mid=5)=120
\end{aligned}
$$

Exercise:

In how many ways can 4 people sit in:

(a) a row.
(b) in a circle
(answer: 4!=24, 3!=6)

Theorem:

The number of distinct permutations of \mathbf{n} things of which
\mathbf{n}_{1} are of one kind, n_{2} of a second kind,..., $\mathbf{n}_{\mathbf{K}}$ of a $\mathrm{k}^{\text {th }}$ kind is

$$
\begin{equation*}
\frac{n!}{n_{1}!n_{2}!\ldots n_{K}!} \tag{2}
\end{equation*}
$$

where $n=n_{1}+n_{2}+\ldots+n_{K}$

EX (18):

How many different ways can $\mathbf{3}$ red, $\mathbf{4}$ yellow and $\mathbf{2}$ blue bulbs be arranged in a string of Christmas tree light with $\mathbf{9}$ sockets?

Solution:

The total number of distinct arrangements is:

$$
\frac{9!}{3!4!2!}=1260
$$

Exercise:

How many different ways can we arrange the
letters in the word statistics?

Combinations:

The number of combinations of \mathbf{n} distinct objects taken \mathbf{r} at time is given by:

$$
\begin{equation*}
\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \text { where } n \geq r \tag{3}
\end{equation*}
$$

where:

1. the order is not important
2. the chosen is without replacement

Note:

$$
\text { 1. }\binom{n}{0}=1
$$

$$
\text { 2. }\binom{n}{1}=n
$$

$$
\text { 3. }\binom{n}{n-1}=n
$$

Ex (19):

In how many ways can 5 starting positions on a basketball team be filled with 8 men who can play any of the positions?

Solution:

$$
\binom{8}{5}=\frac{n!}{r!(n-r)!}=\frac{8!}{5!3!}=56
$$

Theorem:
The number of ways of partitioning a set of n objects into r cells with n_{1} elements in the first cell, n_{2} elements in the second, and so forth is

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

Where $\mathrm{n}_{1+} \mathrm{n}_{2+\ldots+} \mathrm{n}_{\mathrm{k}}=\mathrm{n}$

Ex 2.21 pg 50

In how many ways can 7 graduate students be assigned to 1 triple and 2 double hotel rooms during a conference?

Solution

$$
\left(\begin{array}{lll}
& 7 & \\
3, & 2, & 2
\end{array}\right)=\frac{7!}{3!2!2!}=210
$$

Note

$$
\left(\begin{array}{c}
n \\
r
\end{array} \quad n-r\right)=\binom{n}{r}=\binom{n}{n-r}
$$

1.9 Probability of an Event:

The probability of an event $\mathbf{A}, \mathrm{P}(\mathrm{A})$ is the sum of the weights of all sample points in \mathbf{A}.

$$
P(A)=\frac{n(A)}{n(S)}=\frac{\text { number of ways event } A \text { occures }}{\text { total outcomes in } S}
$$

Therefore:

$$
\begin{aligned}
& \text { 1. } P(\Phi)=\frac{n(\Phi)}{n(S)}=0 \\
& \text { 2. } P(S)=\frac{n(S)}{n(S)}=1 \\
& \text { 3. } 0 \leq P(A) \leq 1,
\end{aligned}
$$

EX 2.24 pg 53:

A coin is tossed twice, what is the probability that at least one head occurs?

Solution:

$\mathbf{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$,
$\mathrm{n}(\mathrm{A})=3, \mathrm{n}(\mathrm{S})=4$
$4 \mathrm{w}=1, \mathrm{w}=1 / 4$,
$\mathrm{A}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}\}$,
$\mathrm{P}(\mathrm{A})=\mathrm{n}(\mathrm{A}) / \mathrm{n}(\mathrm{S})=3 / 4$

Ex 2.26 pg 54:
A die is loaded in such a way that an even number is twice as likely to occur as an odd number. Let \mathbf{A} be the event tha even number turns up and \mathbf{B} be the event that a number divisible by $\mathbf{3}$ occurs. Find $P(A \cap B)$ and $P(A \cup B)$.

Solution:

$$
\begin{aligned}
& \text { Let } A \text { : even number } \rightarrow A=\{2,4,6\}, \\
& B: \text { number divisible by } 3 \rightarrow B=\{3,6\},
\end{aligned}
$$

That is $P(1)=P(3)=P(5)=w, P(2)=P(4)=P(6)=2 w$. Then

$$
3 w+6 w=9 w=1, w=1 / 9
$$

$$
A \cap B=\{6\}, A \cup B=\{2,4,6,3\}, P(A \cap B)=2 / 9, P(A \cup B)=7 / 9
$$

Theorem:

If an experiment can result in any one of \mathbf{N} different equally likely outcomes and if exactly \mathbf{n} of these outcomes correspond to event \mathbf{A}, then the probability of an event \mathbf{A} is:

$$
\begin{equation*}
P(A)=\frac{n}{N}=\frac{n(A)}{n(S)} \tag{4}
\end{equation*}
$$

where $n(A)$ is the number of outcomes that satisfy the event A and $n(S)$ is the total outcomes in the sample space S .

EX (25):

A mixture of candies has $\mathbf{6}$ mints, $\mathbf{4}$ toffees and $\mathbf{3}$ chocolates. If a person makes a random selection of one of these candies, find the probability of getting:
(a) a mint .
(b) a toffee or a chocolate.

Solution:

$$
\mathrm{n}(\mathrm{~S})=13, \mathrm{n}(\mathrm{M})=6, \mathrm{n}(\mathrm{~T})=4, \mathrm{n}(\mathrm{C})=3
$$

Let \mathbf{M}, \mathbf{T} and \mathbf{C} represent the events that the person
selects respectively a mint, a toffee or chocolate candy:

$$
P(M)=\frac{n(M)}{n(S)}=\frac{6}{13}, P(T)=\frac{n(T)}{n(S)}=\frac{4}{13}, P(C)=\frac{n(C)}{n(S)}=\frac{3}{13}
$$

a. $\mathrm{P}($ getting a mint $)=P(M)=\frac{6}{13}$
b. $P($ getting a toffee or a chocolate $)=$

$$
P(T \text { or } C)=P(T \cup C)=P(T)+P(C)=\frac{4}{13}+\frac{3}{13}=\frac{7}{13}
$$

2.5 Additive Rule:

Theorem:

If \mathbf{A} and \mathbf{B} are any two events, then:

$$
\begin{equation*}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \tag{5}
\end{equation*}
$$

Corollary:

If \mathbf{A} and \mathbf{B} are mutually exclusive, then:
$P(A \cup B)=P(A)+P(B) \quad$ (6) \quad Since $A \cap B=\Phi, \mathrm{P}(\Phi)=0$

Corollary:

If $\mathrm{A}_{1}, \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}$ are mutually exclusive (disjoint), then

$$
\begin{equation*}
P\left(A_{1} \cup A_{2} \cup \ldots A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots+P\left(A_{n}\right)=P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) \tag{7}
\end{equation*}
$$

Corollary:

$$
\begin{equation*}
P\left(A_{1} \cup A_{2} \cup \ldots A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots+P\left(A_{n}\right)=P(S)=1 \tag{8}
\end{equation*}
$$

EX (26):

The probability that Paula passes mathematics is $2 / 3$ and the probability that she passes English is 4/9. If the probability of passing both courses is $1 / 4$, what is the probability that Paula will pass at least one of these courses?

Solution:

Let M be the event "passing mathematics" and E be the event
"passing English", then

$$
\begin{aligned}
& P(M)=2 / 3, P(E)=4 / 9, P(M \cap E)=1 / 4 \\
& P(M \cup E)=P(M)+P(E)-P(M \cap E)=\frac{2}{3}+\frac{4}{9}-\frac{1}{4}=31 / 36
\end{aligned}
$$

Ex 2.30 pg 57

What is the probability of getting a total of 7or 11when a pair of dice are tossed?

Solution:

Let A be the event that 7occures and B the event $\mathbf{1 1}$ comes up, then:

$$
\begin{aligned}
& \mathrm{A}=\{(1,6),(6,1),(3,4),(4,3),(2,5),(5,2)\} \\
& \mathrm{B}=\{(5,6),(6,5)\} \\
& \because A \cap B=\Phi, P(A)=6 / 36, P(B)=2 / 36, P(A \cap B)=0, \\
& \therefore P(A \cup B)=P(A)+P(B)=6 / 36+2 / 36=8 / 36
\end{aligned},
$$

Theorem:

If A and A^{\prime} are complementary events, then

$$
\begin{align*}
& P(A)+P\left(A^{\prime}\right)=1 \\
& \Rightarrow P\left(A^{\prime}\right)=1-P(A) \tag{9}
\end{align*}
$$

EX (2.23 pg 58):

If the probabilities that an automobile mechanic will service $\mathbf{3 , 4 , 5 , 6 , 7}, \mathbf{8}$ cars on any given working day are respectively $\mathbf{0 . 1 2 , 0 . 1 9 , 0 . 2 8 , 0 . 2 4 , 0 . 1}$ and $\mathbf{0 . 0 7}$, what is the probability that will service at least 5 cars on his next day at work?

Solution:

Let E be the event that at least 5 cars are serviced,

 then$$
\begin{aligned}
& P(E)=P(X \geq 5)=P(5)+P(6)+P(7)+P(8), \\
& P(E)=1-P\left(E^{\prime}\right) \\
& P\left(E^{\prime}\right)=P(X=3 \text { or } 4)=.12+.19=.31, \\
& P(E)=1-P\left(E^{\prime}\right)=1-.31=.69
\end{aligned}
$$

Conditional Probability:

The conditional probability of occurring an event B when knowing that an event A is happened, that is B given \mathbf{A} denoted by $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ which is defined by:

$$
\begin{align*}
& P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{n(B \cap A)}{n(A)}=\frac{n(B \cap A) / n(S)}{n(A) / n(S)} \text { if } P(A)>0 \\
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{n(A \cap B)}{n(B)}=\frac{n(A \cap B) / n(S)}{n(B) / n(S)} \text { if } P(B)>0 \tag{9}
\end{align*}
$$

EX (29):

	(E) Employed	$\left(E^{c}\right)$ Unemployed	Total
(M) Male		40	
$\left(M^{c}\right)$ Female	140		400
Total	600	300	900

Complete the table, then answer the questions:
What is the probability of:

1. getting a male
2. getting a male given he is an employed
3. getting an unemployed female
4. getting an employed or male

Solution:

$$
\begin{aligned}
& \text { 1. } P(M)=\frac{n(M)}{n(S)}=\frac{500}{900}=.555 \\
& \text { 2. } P(M \mid E)=\frac{P(M \cap E)}{P(E)}=\frac{n(M \cap E)}{n(E)}=\frac{460 / 900}{600 / 900}=460 / 600=.766 \\
& \text { 3. } P\left(E^{C} \cap M^{c}\right)=260 / 900=0.289 \\
& \begin{aligned}
P(E \cup M) & =P(E)+P(M)-P(E \cap M) \\
& =600 / 900+500 / 900-460 / 900 \\
& =640 / 900=0.711
\end{aligned}
\end{aligned}
$$

Independent Events:

Two events \mathbf{A} and \mathbf{B} are independent if and only if:
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B})$ and $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$

Theorem:

Two events \mathbf{A} and \mathbf{B} are independent if and only if:

$$
P(A \cap B)=P(A) P(B)
$$

EX (30):

Let A and B are independent events as follows:

$$
\mathrm{P}(\mathrm{~A})=0.5, \mathrm{P}(\mathrm{~B})=0.6, \text { find } \mathrm{P}(\mathrm{~A} \mid \mathrm{B}), \mathrm{P}(\mathrm{~B} \mid \mathrm{A}) .
$$

Solution:

$\because \mathrm{A}$ and B are independent

$$
\therefore \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\mathrm{P}(\mathrm{~A})=0.5, \mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\mathrm{P}(\mathrm{~B})=0.6
$$

Multiplicative Rules:

Theorem:

If in experiment the events \mathbf{A} and \mathbf{B} can both occur, then
$P(A \cap B)=P(A) P(B \mid A)$ or $P(A \bigcap B)=P(B) P(A \mid B)$

EX 2.37 pg 66

One bag contains $\mathbf{4}$ white balls and $\mathbf{3}$ black balls and a second bag contains $\mathbf{3}$ white balls and 5 black balls. One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from the second bag is black?

Solution:

Let B_{1}, B_{2} and W_{1} represent respectively the drawing of a black ball from bag 1, a black ball from bag 2 and a white ball from bag 1. We are interested in the union of $B_{1} \cap B_{2}$ and $W_{1} \cap B_{2}$.

$$
\begin{aligned}
& P\left[\left(B_{1} \cap B_{2}\right) \cup P\left(W_{1} \cap B_{2}\right)\right]=P\left(B_{1} \cap B_{2}\right)+P\left(W_{1} \cap B_{2}\right) \\
& =P\left(B_{1}\right) P\left(B_{2} \mid B_{1}\right)+P\left(W_{1}\right) P\left(B_{2} \mid W_{1}\right)=(3 / 7)(6 / 9)+(4 / 7)(5 / 9)=38 / 63
\end{aligned}
$$

EX (32):

If A and B are independent events, $P(A)=0.4, P(A \cup B)=0.6$,
find $P(B)$.

Solution:

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =P(A)+P(B)-P(A) P(B) \\
0.6 & =0.4+P(B)-0.4 P(A) \\
0.2 & =0.6 P(B) \Rightarrow P(B)=0.2 / 0.6=0.33
\end{aligned}
$$

Theorem:

If in an experiment the events $\mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{K}}$ can occur,
then:
$P\left(A_{1} \cap \ldots \cap A_{K}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{2} \cap A_{1}\right) \ldots P\left(A_{K} \mid A_{1} \cap \ldots \cap A_{K-1}\right)$
If $\mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{K}}$ are independent, then

$$
P\left(A_{1} \cap \ldots \cap A_{K}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right) \ldots P\left(A_{K}\right)
$$

EX (33):

A coin is biased so that a head is twice as likely to occur as
a tail. If the coin is tossed $\mathbf{3}$ times, what is the probability
of getting (2) tails and (1) head?

Solution:

$$
\begin{gathered}
\mathrm{H}: \mathrm{T} \\
2 \mathrm{w}: \mathrm{w} \\
2 \mathrm{w}+\mathrm{w}=3 \mathrm{w}=1 \Rightarrow \mathrm{w}=1 / 3 \\
\mathrm{P}(\mathrm{H})=2 / 3, \mathrm{P}(\mathrm{~T})=1 / 3
\end{gathered}
$$

S $=\{$ HHH, HHT, THH, HTH, HTT, TTH, THT, TTT $\}$

$$
\begin{gathered}
\mathrm{P}(\mathrm{H})=2 / 3, \mathrm{P}(\mathrm{~T})=1 / 3 \\
\mathbf{A}=\{\mathrm{TTH}, \mathrm{HTT}, \mathrm{THT}\} \\
\mathrm{P}(\mathrm{TTH})=(1 / 3)(2 / 3)(1 / 3)=2 / 27 \\
\mathrm{P}(\mathrm{~A})=3(2 / 27)=6 / 27
\end{gathered}
$$

EX (21): (Reading)

A box contains 4 white balls, 2 red balls and 3 green balls. Two balls are drawn without replacement, find the probability that:

1. the two balls are white
2. the two balls are red
3. the two balls are green
4. one ball is red and one ball is white
5. the two balls are not green
6. the two balls are the same colour

Solution:

$$
\begin{aligned}
& \text { 1. } P(\text { two balls are white })=\frac{\binom{4}{2}\binom{5}{0}}{\binom{9}{2}}=\frac{(6)(1)}{(36)}=0.1667 \\
& \text { 2. } P(\text { two balls are red })=\frac{\binom{2}{2}\binom{7}{0}}{\binom{9}{2}}=\frac{(1)}{(36)}=0.028
\end{aligned}
$$

$$
\text { 3. } P(\text { two balls are green })=\frac{\binom{3}{2}\binom{6}{0}}{\binom{9}{2}}=\frac{(3)(1)}{(36)}=0.083
$$

4. P (one ball is red and one ball is white $)=\frac{\binom{4}{1}\binom{2}{1}\binom{3}{0}}{\binom{9}{2}}=\frac{(4)(2)(1)}{(36)}=0.222$
5. $P($ the two balls are not green $)=\frac{\binom{2}{2}\binom{4}{0}\binom{3}{0}}{\binom{9}{2}}+\frac{\binom{4}{2}\binom{2}{0}\binom{3}{0}}{\binom{9}{2}}=0.028+0.167=0.195$
6. $\begin{aligned} P(\text { the two balls are the same colour }) & =\frac{\binom{4}{2}\binom{5}{0}}{\binom{9}{2}}+\frac{\binom{2}{2}\binom{7}{0}}{\binom{9}{2}}+\frac{\binom{3}{2}\binom{6}{0}}{\binom{9}{2}} \\ & =0.25+0.028+0.083=0.361\end{aligned}$
