

324 Stat Lecture Notes

(1) **Probability**

(Chapter 2 of the book pg 35-71)

Definitions:

Sample Space:

Is the set of all possible outcomes of a statistical experiment, which is denoted by the symbol S \bullet

Notes:

- -Each outcome in a sample space is called an element or a member or a sample point.
- S is called the **sure event**

EX (I):

Consider the experiment of tossing a die. If we are interested in the number that shows on the top face, the sample space would be: S= {1, 2, 3, 4, 5, 6} If we are interested only in whether the

- number is even or odd, the sample space is simply:
- S= {even, odd}

0

The sample space of tossing a coin 3 times: S= {HHH, HHT, THH, HTH, HTT, TTH, THT, TTT}.

Note:

- you can use the tree diagram on pg 37 to find S in this example

EX (3):

 $S = \{X | X + 2 = 0\} = \{-2\}.$

Events:

An event A is a subset of a sample space \bullet

For instance, when a die is tossed, then the sample space is $\{1,2,3,4,5,6\}$. If the event **A** is concerned with the elements

that divisible by 3 such that

A={3,6}, then $A \subset S$.

EX (4): The set which contains no elements at all is called the null set or the impossible event denoted by $\mathbf{\Phi}$. Ex $\mathbf{B} = \{X | X \text{ is an even factor of } 7\}, \text{ then }$ B=Φ={ }

<u>Note:</u>

 $\Phi \subset \mathsf{S}$, $\mathsf{S} \subset \mathsf{S}$

Complement of an event A:

The complement of an event **A** with respect to **S** is the set of all elements of **S** that not in **A** denoted by

A' or A^C or \overline{A} .

See Ex 2.6 pg 39

EX (5): $S = \{1, 2, 3, 4, 5, 6\}.$

Let **B** the event that has the number which greater than 3

such that $\mathbf{B} = \{4, 5, 6\}$, then $B' = \{1, 2, 3\}$.

Intersection:

The intersection of two events **A** and **B** denoted by $A \cap B$ is the event containing all elements that are common to **A** and **B**.

E

EX (6):

Let M= {a, e, i, o, u, r, s} and N={r, s, t}, then $M \cap N = \{r, s\}$

Let $S = \{1, 2, 3, 4, 5, 6\}, A = \{1, 2, 3\}, B = \{3, 6\},$ Then $A \cap B = \{3\}.$ See Ex 2.7 pg 39

Mutually Exclusive (Disjoint) Events:

Two events **A** and **B** are mutually exclusive (disjoint)

if and only if $A \cap B = \Phi$,

that is if A and B have no elements in common.

See Ex 2.8 pg 40

$\underline{\mathbf{EX} (7):}$ $\mathbf{S} = \{1, 2, 3, 4, 5, 6\},$ $\mathbf{A} = \{1, 3, 5\}, \mathbf{B} = \{2, 4, 6\},$ then $A \cap B = \Phi$

A and B are mutually exclusive or disjoint.

Union:

The union of the two events **A** and **B** denoted by $A \cup B$

which is the event containing all the elements that belong to **A** or **B** or both• that is $A \cup B$ occurs if at least one of A or B occurs.

EX (8):

Let $M = \{X \mid 3 < X < 9\}$ $N = \{y \mid 5 < y < 12\}$

Then $M \cup N = \{z \mid 3 < z < 12\}.$

<u>EX (9):</u>

Let $A = \{a, b, c\}, B = \{b, c, d, e\}$

then $A \cup B = \{a, b, c, d, e\}$

See Ex 2.11 and 2.12 pg 40

1.7 Definition:

If A contains B, then B is called a subset of A, that is $B \subset A$.

EX (10):

A= {1, 2, 3, 4}, **B**= {2, 3}. ∴ *B* ⊂ *A* ∴ *A* ∩ *B* = *B*, *A* ∪ *B* = *A*, (*A* ∩ *B*)^{*C*} = *B*^{*C*}, (*A* ∪ *B*)^{*C*} = (*A*)^{*C*}

2.3 Counting Sampl Points (pg 44):

If an operation can be performed in $(\mathbf{n_1})$ ways and if for each of these a second operation can be performed in $(\mathbf{n_2})$ ways, then the two operations can be performed together in $(\mathbf{n_1n_2})$ ways.

EX (11):

How many sample points are in the sample space when a pair of dice is thrown once?

Solution:

The first die can land in any one of $\mathbf{n_1}$ =6 ways. For each of these 6 ways the second die can also land in $\mathbf{n_2}$ =6 ways. Therefore, the pair of dice can land in $\mathbf{n_1n_2}$ = (6)×(6) =36 possible ways.

<u>EX (12):</u>

How many lunches consisting of a soup, sandwich, dessert and a drink are possible if we can select from 4 soups, 3 kinds of sandwiches, 5 desserts and 4 drinks?

Solution:

Since $n_1=4$, $n_2=3$, $n_3=5$, $n_4=4$, then $(n_1) (n_2) (n_3) (n_4) = (4) (3)$

(5) (4) =240 different ways to choose lunch.

See Ex 2.15 and 2.16 pg 46

<u>EX (13):</u>

How many even three – digit numbers can be formed from the digits

1,2,5,6 and 9 if each digit can be used only once (without replacement)

3	4	2

 $(n_1)(n_2)(n_3)=(2)(4)(3)=24$ even three – digit numbers.

Ex 2.17 pg 46 How many even four digit number can be formed from the digits 0,1,2,5,6,9 if each digit can be used only once?

A permutation is an arrangement of all or part of a set of objects ■

• The number of permutations of **n** distinct objects is **n**!.

EX (14):

How many words can be obtained using the three letters: a, b, c

Solution:

In general n distinct objects can be arranged in

$$n! = n (n-1) (n-2) \dots 3x 2x 1$$
 ways.

By definition **1!** =**0!** =**1**

Permutations:

The number of permutations of **n** distinct objects taken **r** at a time is given by:

$$p_r^n = \frac{n!}{(n-r)!} \quad \text{where} \quad n \ge r \tag{1}$$

Where:

1. the order is important.

2. the chosen is without replacement

A president, treasurer and secretary all different are to be chosen from a club consisting of 10 – people. How many

different choices of officers are possible?

Solution:

(15):

$$p_3^{10} = \frac{10!}{7!} = 720$$

■ See Ex 2.18 pg 48

EX (16):

How many ways can a local chapter of the American Chemical Society Schedules 3 speakers for 3 different meetings if they are available on any of 5 possible dates?

Solution:

The total number of possible schedules is:

$$p_3^5 = \frac{5!}{2!} = \frac{120}{2} = 60$$

Theorem:

The number of permutations of **n** distinct objects arranged in a. a row is **n**!

b. a circle is (n-1)!

<u>EX (17):</u>

How many ways can 3 Arabic books, 2 Math books and 1 chemistry book arranged:

- 1. in a book shelf?
- 2. in a rounded table?

Solution:

The number of books is **n=6** books, then:

1. **n!**=6!=720

2. (n-1)!=5!=120

Exercise:

In how many ways can 4 people sit in:

(a) a row.

(b) in a circle

(answer: 4!=24, 3!=6)

Theorem:

The number of distinct permutations of **n** things of which \mathbf{n}_1 are of one kind, n_2 of a second kind,..., \mathbf{n}_K of a kth kind is

$$\frac{n!}{n_1!n_2!\dots n_K!} \qquad (2$$

where $n = n_1 + n_2 + ... + n_K$

<u>EX (18):</u>

How many different ways can 3 red, 4 yellow and 2 blue bulbs be arranged in a string of Christmas tree light with 9 sockets?

Solution:

The total number of distinct arrangements is:

$$\frac{9!}{3! \; 4! \; 2!} = 1260$$

See Ex 2.20 pg 49

Exercise:

How many different ways can we arrange the

letters in the word statistics?

Combinations:

The number of combinations of \mathbf{n} distinct objects taken \mathbf{r} at time is given by:

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} \quad \text{where } n \ge r \tag{3}$$

where:

- 1. the order is not important
- 2. the chosen is without replacement

<u>Ex (19):</u>

In how many ways can 5 starting positions on a basketball team be filled with 8 men who can play any of the positions?

Solution:

$$\binom{8}{5} = \frac{n!}{r!(n-r)!} = \frac{8!}{5!3!} = 56$$

Theorem:

The number of ways of partitioning a set of n objects into r cells with n_1 elements in the first cell, n_2 elements in the second , and so forth is

$$\binom{n}{n_{1, n_{2, \dots, n_{k}}} = \frac{n!}{n_{1}! n_{2}! \dots n_{k}!}$$

Where $n_{1+} n_{2+...+} n_{k=} n$

Ex 2.21 pg 50

In how many ways can 7 graduate students be assigned to 1 triple and 2 double hotel rooms during a conference?

Solution

$$\begin{pmatrix} 7 \\ 3, 2, 2 \end{pmatrix} = \frac{7!}{3! \, 2! \, 2!} = 210$$

Note

$$\binom{n}{r} \binom{n}{n-r} = \binom{n}{r} = \binom{n}{n-r}$$

See Ex 2022 pg 50

1.9 Probability of an Event:

The probability of an event **A**, P (A) is the sum of the weights of all sample points in **A**.

 $P(A) = \frac{n(A)}{n(S)} = \frac{number of ways event A occures}{total outcomes in S}$

Therefore:

1.
$$P(\Phi) = \frac{n(\Phi)}{n(S)} = 0$$

2.
$$P(S) = \frac{n(S)}{n(S)} = 1$$

3. $0 \le P(A) \le 1$,

EX 2.24 pg 53:

A coin is tossed twice, what is the probability that at least one head occurs?

Solution:

S = {HH, HT, TH, TT}, n (A) = 3, n(S) = 4 4w=1, w=1/4,A= {HH, HT, TH}, P (A) = n (A)/n(S) = 3/4

Ex 2.26 pg 54:

A die is loaded in such a way that an even number is twice as likely to occur as an odd number. Let **A** be the event tha even number turns up and **B** be the event that a number divisible by **3** occurs. Find $P(A \cap B)$ and $P(A \cup B)$.

Solution:

Let A: even number $\rightarrow A = \{2, 4, 6\},$ B: number divisible by $3 \rightarrow B = \{3, 6\},$ That is P(1)=P(3)=P(5)= w, P(2)=P(4)=P(6)=2w. Then 3w+6w=9w=1, w = 1/9.

 $A \cap B = \{6\}, A \cup B = \{2,4,6,3\}, P(A \cap B) = 2/9, P(A \cup B) = 7/9$

See Ex 2.25 pg 53

Theorem:

If an experiment can result in any one of N different equally likely outcomes and if exactly **n** of these outcomes correspond to event **A**, then the probability of an event **A** is:

$$P(A) = \frac{n}{N} = \frac{n(A)}{n(S)} \tag{4}$$

where n(A) is the number of outcomes that satisfy the event A and n(S) is the total outcomes in the sample space S.

<u>EX (25):</u>

A mixture of candies has 6 mints, 4 toffees and 3 chocolates. If a person makes a random selection of one of these candies, find the probability of getting:

(a) a mint .

(b) a toffee or a chocolate.

Solution:

n (S)=13, n(M)=6, n(T)=4, n(C)=3

Let **M**, **T** and **C** represent the events that the person selects respectively a mint, a toffee or chocolate candy:

$$P(M) = \frac{n(M)}{n(S)} = \frac{6}{13}, \ P(T) = \frac{n(T)}{n(S)} = \frac{4}{13}, \ P(C) = \frac{n(C)}{n(S)} = \frac{3}{13}$$

a. P (getting a mint) =
$$P(M) = \frac{6}{13}$$

b. P(getting a toffee or a chocolate) =

$$P(T \text{ or } C) = P(T \cup C) = P(T) + P(C) = \frac{4}{13} + \frac{3}{13} = \frac{7}{13}$$

See Ex 2.27 pg 54

2.5 Additive Rule:

Theorem:

If **A** and **B** are any two events, then:

 $P(A \bigcup B) = P(A) + P(B) - P(A \cap B)$ (5)

Corollary:

If **A** and **B** are <u>mutually exclusive</u>, then:

 $P(A \cup B) = P(A) + P(B)$ (6) Since $A \cap B = \Phi$, $P(\Phi) = 0$

Corollary:

If $A_1, A_2... A_n$ are mutually exclusive (disjoint), then

$$P(A_1 \bigcup A_2 \bigcup \dots A_n) = P(A_1) + P(A_2) + \dots + P(A_n) = P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$$
(7)

Corollary:

$$P(A_1 \cup A_2 \cup \dots A_n) = P(A_1) + P(A_2) + \dots + P(A_n) = P(S) = 1$$
(8)

<u>EX (26):</u>

The probability that Paula passes mathematics is 2/3 and the probability that she passes English is 4/9. If the probability of passing both courses is 1/4, what is the probability that Paula will pass at least one of these courses?

Solution:

Let M be the event "passing mathematics" and E be the event "passing English", then

$$P(M) = 2/3 , P(E) = 4/9 , P(M \cap E) = 1/4$$

$$P(M \cup E) = P(M) + P(E) - P(M \cap E) = \frac{2}{3} + \frac{4}{9} - \frac{1}{4} = 31/36$$

Ex 2.30 pg 57

What is the probability of getting a total of **7**or **11**when a pair of dice are tossed?

Solution:

Let A be the event that 7occures and B the event 11 comes up, then:

 $A = \{(1,6), (6,1), (3,4), (4,3), (2,5), (5,2)\}$

 $B = \{(5,6),(6,5)\}$

 $:: A \cap B = \Phi, P(A) = 6/36, P(B) = 2/36, P(A \cap B) = 0$

: $P(A \cup B) = P(A) + P(B) = 6/36 + 2/36 = 8/36$

,

Theorem:

If *A* and *A'* are complementary events, then P(A) + P(A') = 1 $\Rightarrow P(A') = 1 - P(A)$ (9)

EX (2.23 pg 58):

If the probabilities that an automobile mechanic will service **3,4,5,6,7,8** cars on any given working day are respectively **0.12,0.19,0.28,0.24,0.1** and **0.07**, what is the probability that will service at least **5** cars on his next day at work?

Solution:

Let E be the event that at least 5 cars are serviced, then

$$P(E) = P(X \ge 5) = P(5) + P(6) + P(7) + P(8),$$

$$P(E) = 1 - P(E')$$

$$P(E') = P(X = 3 \text{ or } 4) = .12 + .19 = .31,$$

$$P(E) = 1 - P(E') = 1 - .31 = .69$$

The condition

Conditional Probability:

The conditional probability of occurring an event B when knowing that an event A is happened, that is B given A denoted by P (B|A) which is defined by:

 $P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{n(B \cap A)}{n(A)} = \frac{n(B \cap A)/n(S)}{n(A)/n(S)} \quad if \quad P(A) > 0$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{n(A \cap B)}{n(B)} = \frac{n(A \cap B)/n(S)}{n(B)/n(S)} \quad if \quad P(B) > 0$$
(9)

	(E)Employed	(E^{C}) Unemployed	Total
(<i>M</i>) Male		40	
(M^{C}) Female	140		400
Total	600	300	900

Complete the table, then answer the questions:

What is the probability of:

- 1. getting a male
- 2. getting a male given he is an employed
- 3. getting an unemployed female
- 4. getting an employed or male

Solution:

1.
$$P(M) = \frac{n(M)}{n(S)} = \frac{500}{900} = .555$$

2. $P(M | E) = \frac{P(M \cap E)}{P(E)} = \frac{n(M \cap E)}{n(E)} = \frac{460/900}{600/900} = 460/600 = .766$
3. $P(E^{C} \cap M^{C}) = 260/900 = 0.289$
 $P(E \bigcup M) = P(E) + P(M) - P(E \cap M)$
4. $= 600/900 + 500/900 - 460/900$
 $= 640/900 = 0.711$

See Ex 2.34 pg 63

Independent Events:

Two events **A** and **B** are independent if and only if: P (B|A) = P (B) and P (A|B) = P (A)

Theorem:

Two events A and B are independent if and only if:

 $P(A \cap B) = P(A)P(B)$

EX (30):

Let A and B are independent events as follows: P (A) = 0.5, P (B) = 0.6, find P (A|B), P (B|A).

Solution:

: A and B are independent

: P(A|B) = P(A) = 0.5, P(B|A) = P(B) = 0.6

Multiplicative Rules:

Theorem:

If in experiment the events A and B can both occur,

then

 $P(A \cap B) = P(A)P(B \mid A)$ or $P(A \cap B) = P(B)P(A \mid B)$

EX 2.37 pg 66

One bag contains **4** white balls and **3** black balls and a second bag contains **3** white balls and **5** black balls. One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from the second bag is black?

Solution:

Let B_1, B_2 and W_1 represent respectively the drawing of a black ball from bag **1**, a black ball from bag **2** and a white ball from bag **1**. We are interested in the union of $B_1 \cap B_2$ and $W_1 \cap B_2$.

 $P[(B_1 \cap B_2) \cup P(W_1 \cap B_2)] = P(B_1 \cap B_2) + P(W_1 \cap B_2)$ $= P(B_1)P(B_2 \mid B_1) + P(W_1)P(B_2 \mid W_1) = (3/7)(6/9) + (4/7)(5/9) = 38/63$

EX (32):

If A and B are independent events, P(A) = 0.4, $P(A \cup B) = 0.6$,

find P(B).

Solution:

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ = P(A) + P(B) - P(A)P(B)0.6 = 0.4 + P(B) - 0.4P(A)0.2 = $0.6P(B) \Rightarrow P(B) = 0.2/0.6 = 0.33$

Theorem:

If in an experiment the events $A_1 \dots A_K$ can occur, then:

 $P(A_1 \cap ... \cap A_K) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_2 \cap A_1)...P(A_K \mid A_1 \cap ... \cap A_{K-1})$ If $A_1 \dots A_K$ are independent, then $P(A_1 \cap ... \cap A_K) = P(A_1)P(A_2)P(A_3)...P(A_K)$

<u>EX (33):</u>

A coin is biased so that a head is twice as likely to occur as a tail. If the coin is tossed **3** times, what is the probability of getting (**2**) tails and (**1**) head?

Ex 2.39 pg 67 Find the probability that

a) The entire system works?b) the component C does not work given that the entire system work?

If the 4 components work independently

P (entire system works) = P $[A \cap B \cap (C \cup D)] = P(A) P(B) P(C \cup D) =$ (0.9) (0.9)[(0.8) + (0.8) - (0.8) (0.8)]= 0.7779

Or P (entire system works)= P [A \cap B \cap (C \cup D)]=P(A) P(B) [I-P($\bar{c} \cap \bar{p}$)])

b) P (C does not work| the entire system work)=P(A \cap B $\cap \overline{C} \cap$ D) / P (entire system works)

= (0.9) (0.9) [1-(0.8)] (0.8) / 0.7776 = 0.1667

EX (21): (Reading)

A box contains 4 white balls, 2 red balls and 3 green balls. Two

balls are drawn without replacement, find the probability that:

- 1. the two balls are white
- 2. the two balls are red
- 3. the two balls are green
- 4. one ball is red and one ball is white
- 5. the two balls are not green
- 6. the two balls are the same colour

Solution:

1.
$$P(\text{two balls are white}) = \frac{\binom{4}{2}\binom{5}{0}}{\binom{9}{2}} = \frac{(6)(1)}{(36)} = 0.1667$$

2. $P(\text{two balls are red}) = \frac{\binom{2}{2}\binom{7}{0}}{\binom{9}{2}} = \frac{(1)}{(36)} = 0.028$

3.
$$P(two \ balls \ are \ green) = \frac{\binom{3}{2}\binom{6}{0}}{\binom{9}{2}} = \frac{(3)(1)}{(36)} = 0.083$$

4. $P(one \ ball \ is \ red \ and \ one \ ball \ is \ white}) = \frac{\binom{4}{1}\binom{2}{1}\binom{3}{0}}{\binom{9}{2}} = \frac{(4)(2)(1)}{(36)} = 0.222$

= 0.25 + 0.028 + 0.083 = 0.361