Chapter 2

Random Variable

CLO2	Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance.

1. Introduction

- In Chapter 1, we introduced the concept of event to describe the characteristics of outcomes of an experiment.
- Events allowed us more flexibility in determining the proprieties of the experiments better than considering the outcomes themselves.
- In this chapter, we introduce the concept of random variable, which allows us to define events in a more consistent way.
- In this chapter, we present some important operations that can be performed on a random variable.
- Particularly, this chapter will focus on the concept of expectation and variance.

2. The random variable concept

- A random variable X is defined as a real function that maps the elements of sample space S to real numbers (function that maps all elements of the sample space into points on the real line).

$$
X: S \rightarrow \mathbb{R}
$$

- A random variable is denoted by a capital letter (such as: X, Y, Z) and any particular value of the random variable by a lowercase letter (such as: x, y, z).
- We assign to s (every element of S) a real number $X(s)$ according to some rule and call $X(s)$ a random variable.

Example 2.1:

An experiment consists of flipping a coin and rolling a die.
Let the random variable X chosen such that:
A coin head (H) corresponds to positive values of X equal to the die number
A coin tail (T) corresponds to negative values of X equal to twice the die number.

Plot the mapping of S into X.

Solution 2.1:

The random variable X maps the samples space of 12 elements into 12 values of X from -12 to 6 as shown in Figure 1.

Figure 1. A random variable mapping of a sample space.

- Discrete random variable: If a random variable X can take only a particular finite or counting infinite set of values $x_{1}, x_{2}, \ldots, x_{N}$, then X is said to be a discrete random variable.
- Continuous random variable: A continuous random variable is one having a continuous range of values.

3. Distribution function

- If we define $P(X \leq x)$ as the probability of the event $X \leq x$ then the cumulative probability distribution function $\boldsymbol{F}_{\boldsymbol{X}}(\boldsymbol{x})$ or often called distribution function of X is defined as:

$$
\begin{equation*}
F_{X}(x)=P(X \leq x) \text { for }-\infty<x<\infty \tag{1}
\end{equation*}
$$

Probability mass function

- The argument x is any real number ranging from $-\infty$ to ∞.
- Proprieties:

1) $F_{X}(-\infty)=0$
2) $F_{X}(\infty)=1$
(since F_{X} is a probability, the value of the distribution function is always between 0 and 1).
3) $0 \leq F_{X}(x) \leq 1$
4) $F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right)$ if $x_{1}<x_{2} \quad$ (event $\left\{X \leq x_{1}\right\}$ is contained in the event $\{X \leq$ $\left.x_{2}\right\}$, monotically increasing function)
5) $P\left(x_{1}<X \leq x_{2}\right)=F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right)$
6) $F_{X}\left(x^{+}\right)=F_{X}(x)$, where $x^{+}=x+\varepsilon$ and $\varepsilon \rightarrow 0$ (Continuous from the right)

- For a discrete random variable X, the distribution function $F_{X}(x)$ must have a "stairstep form" such as shown in Figure 2.

(a)

Figure 2. Example of a distribution function of a discrete random variable.

- The amplitude of a step equals to the probability of occurrence of the value X where the step occurs, we can write:

$$
\begin{gathered}
P\left(X=x_{i}\right) \\
F_{X}(x)=\sum_{i=1}^{N} P\left(x_{i}\right) \cdot u\left(x-x_{i}\right) \\
\text { Unit step function: } u(x)= \begin{cases}1 & x \geq 0 \\
0 & x<0\end{cases}
\end{gathered}
$$

4. Density function

- The probability density function (pdf), denoted by $\boldsymbol{f}_{\boldsymbol{X}}(\boldsymbol{x})$ is defined as the derivative of the distribution function:

- $f_{X}(x)$ is often called the density function of the random variable X.
- For a discrete random variable, this density function is given by:

$$
\begin{equation*}
f_{X}(x)=\sum_{i=1}^{N} P\left(x_{i}\right) \delta\left(x-x_{i}\right) \tag{4}
\end{equation*}
$$

δ Unit impulse function: $\delta(x)=\left\{\begin{array}{cc}1 & x=0 \\ 0 & \text { otherwise }\end{array}\right.$

- Proprieties:

$$
\begin{array}{ll}
\checkmark & f_{X}(x) \geq 0 \text { for all } x \\
\checkmark & F_{X}(x)=\int_{-\infty}^{x} f_{x}(\theta) d \theta \\
\checkmark & \int_{-\infty}^{\infty} f_{X}(x) d x=F_{X}(\infty)-F_{X}(-\infty)=1 \\
\checkmark & P\left(x_{1}<X \leq x_{2}\right)=F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} f_{X}(\theta) d \theta
\end{array}
$$

Example 2.2:

Let X be a random variable with discrete values in the set $\{-1,-0.5,0.7,1.5,3\}$. The corresponding probabilities are assumed to be $\{0.1,0.2,0.1,0.4,0.2\}$.
a) Plot $F_{X}(x)$, and $f_{X}(x)$
b) Find $P(x<-1), \quad P(-1<x \leq-0.5)$

Solution 2.2:

a)

b) $P(X<-1)=0$ because there are no sample space points in the set $\{X<-1\}$. Only when $X=-1$ do we obtain one outcome and we have immediate jump in probability of 0.1 in $F_{X}(x)$. For $-1<x<-$ 0.5 there are no additional space points so $F_{X}(x)$ remains constant at the value 0.1.
$P(-1<X \leq-05)=F_{X}(-0.5)-F_{X}(-1)=0.3-0.1=0.2$

Example 3:

Find the constant c such that the function:
$f_{X}(x)= \begin{cases}c \cdot x & 0 \leq x \leq 3 \\ 0 & \text { otherwise }\end{cases}$
is a valid probability density function ($p d f$)
Compute $P(1<x \leq 2)$

Find the cumulative distribution function $F_{X}(x)$

Solution:

5. Examples of distributions

Discrete random variables	
\bullet Binominal distribution	• Gaussian (Normal) distribution
\bullet Poisson distribution	• Uniform distribution
	• Exponential distribution
	\bullet Rayleigh distribution

The Gaussian distribution

- The Gaussian or normal distribution is on the important distributions as it describes many phenomena.
- A random variable X is called Gaussian or normal if its density function has the form:

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} e^{-\frac{(x-a)^{2}}{2 \sigma_{x}^{2}}} \tag{5}
\end{equation*}
$$

$\sigma_{x}>0$ and a are, respectively the mean and the standard deviation of X which measures the width of the function.

Figure 3. Gaussian densitv function

Figure 4. Gaussian density function with $a=0$ and different values of σ_{x}

- The distribution function is:

$$
\begin{equation*}
F_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} \int_{-\infty}^{x} e^{\frac{-(\theta-a)^{2}}{2 \sigma_{x}^{2}}} d \theta \tag{5}
\end{equation*}
$$

\Longrightarrow This integral has no closed form solution and must be solved by numerical methods.

- To make the results of $F_{X}(x)$ available for any values of x, a, σ_{x}, we define a standard normal distribution with mean $a=0$ and standard deviation $\sigma_{x}=1$, denoted $\mathrm{N}(0,1)$:

$$
\begin{align*}
f(x) & =\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \tag{6}\\
F(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{\beta^{2}}{2}} d \beta \tag{7}
\end{align*}
$$

- Then, we use the following relation:

$$
\begin{equation*}
F_{Z}(\mathrm{z})=F_{X}\left(\frac{x-\mathrm{a}}{\sigma_{x}}\right) \tag{8}
\end{equation*}
$$

- To extract the corresponding values from an integration table developed for $N(0,1)$.

Example 4:

Find the probability of the event $\{\mathrm{X} \leq 5.5\}$ for a Gaussian random variable with $a=3$ and $\sigma_{x}=2$

Solution:

$$
P\{X \leq 5.5\}=F_{Z}(5.5)=F_{X}\left(\frac{5.5-3}{2}\right)=F_{X}(1.25)
$$

Using the table, we have: $P\{X \leq 5.5\}=F_{X}(1.25)=0.8944$

Example 5:

In example 4, find $P\{X>5.5\}$

Solution:

$$
\begin{aligned}
P\{X>5.5\} & =1-P\{X \leq 5.5\} \\
& =1-F(1.25)=0.1056
\end{aligned}
$$

6. Other distributions and density examples

The Binomial distribution

- The binomial density can be applied to the Bernoulli trial experiment which has two possible outcomes on a given trial.
- The density function $f_{x}(x)$ is given by:

$$
\begin{equation*}
f_{X}(x)=\sum_{k=0}^{N}\binom{N}{k} p^{K}(1-p)^{N-k} \delta(x-k) \tag{9}
\end{equation*}
$$

Where $\binom{N}{k}=\frac{N!}{(N-k)!k!} \quad$ and $\delta(x)= \begin{cases}1 & x=0 \\ 0 & x \neq 0\end{cases}$

- \quad Note that this is a discrete r.v.
- The Binomial distribution $F_{X}(x)$ is:

$$
\begin{align*}
F_{X}(x) & =\int_{-\infty}^{x} \sum_{k=0}^{N}\binom{N}{k} p^{k}(1-p)^{N-k} \delta(x-k) \tag{10}\\
& =\sum_{k=0}^{N}\binom{N}{k} p^{k}(1-p)^{N-k} u(x-k)
\end{align*}
$$

The Uniform distribution

- The density and distribution functions of the uniform distribution are given by:

$$
\begin{align*}
& f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & a \leq x \leq b \\
0 & \text { elsewhere }
\end{array}\right. \tag{11}\\
& F_{X}(x)=\left\{\begin{array}{cc}
0 & x<a \\
\frac{(x-a)}{(b-a)} & a \leq x<b \\
1 & x \geq b
\end{array}\right. \tag{12}
\end{align*}
$$

The Exponential distribution

- The density and distribution functions of the exponential distribution are given by:

$$
\begin{align*}
& f_{X}(x)= \begin{cases}\frac{1}{b} e^{\frac{-(x-a)}{b}} & x \geq a \\
0 & x<a\end{cases} \tag{13}\\
& F_{X}(x) \begin{cases}1-e^{\frac{-(x-a)}{b}} & x \geq a \\
0 & x<a\end{cases} \tag{14}
\end{align*}
$$

where $b>0$

7. Expectation

- Expectation is an important concept in probability and statistics. It is called also expected value, or mean value or statistical average of a random variable.
- The expected value of a random variable X is denoted by $E[X]$ or \bar{X}
- If X is a continuous random variable with probability density function $f_{X}(x)$, then:

$$
\begin{equation*}
E[X]=\int_{-\infty}^{+\infty} x f_{X}(x) d x \tag{15}
\end{equation*}
$$

- If X is a discrete random variable having values $x_{1}, x_{2}, \ldots, x_{N}$, that occurs with probabilities $P\left(x_{i}\right)$, we have

$$
\begin{equation*}
f_{X}(x)=\sum_{i=1}^{N} P\left(x_{i}\right) \delta\left(x-x_{i}\right) \tag{16}
\end{equation*}
$$

Then the expected value $E[X]$ will be given by:

$$
\begin{equation*}
E[X]=\sum_{i=1}^{N} x_{i} P\left(x_{i}\right) \tag{17}
\end{equation*}
$$

Example 3.1: find $\mathrm{E}[\mathrm{x}]$ for the exponential r.v.:

$$
f_{\mathrm{X}}(x)= \begin{cases}\frac{1}{b} e^{\frac{-(x-a)}{b}} & x \geq a \\ 0 & x<a\end{cases}
$$

Solv: $E[x]=\int_{-\infty}^{\infty} x f(x) d x=\int_{a}^{\infty} \frac{x}{b} e^{-\frac{(x-a)}{b}} d x=\frac{e^{a / b}}{b} \int_{a}^{\infty} x e^{\frac{-x}{b}} d x$
From integration table we have: $\int x e^{c x} d x=e^{c x}\left[\frac{x}{c}-\frac{1}{c^{2}}\right]$
Here $c=-\frac{1}{b} \Rightarrow E[X]=\frac{e^{a / b}}{b}\left[e^{-\frac{x}{b}}\left(-b x-b^{2}\right)\right]_{a}^{\infty}$

$$
\begin{gathered}
=\frac{e^{a / b}}{b}\left[\cdot e^{-\infty}(-\infty)-e^{-a / b}\left(-a b-b^{2}\right)\right] \\
=\frac{e^{a / b} \cdot e^{-a / b}\left(a b+b^{2}\right)}{b}=\mathrm{a}+\mathrm{b}
\end{gathered}
$$

Example 3.2: find the expected value of the points on the top face of tossing a fair die experiment?

Solu: $\mathrm{X}=\{1,2,3,4,5,6\}$ and $\mathrm{P}\left(x_{i}\right)=\frac{1}{6}$ for $\mathrm{i}=1, \ldots .6$ since the die is fair.
So, $E[X]=\sum_{i=1}^{6} x_{i} P\left(x_{i}\right)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=3 \cdot 5$

7.1 Expected value of a function of a random variable

- Let be X a random variable then the function $g(X)$ is also a random variable, and its expected value $E[g(X)]$ is given by

$$
\begin{equation*}
E[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x \tag{18}
\end{equation*}
$$

- If X is a discrete random variable then

$$
\begin{equation*}
E[g(X)]=\sum_{i=1}^{N} g\left(x_{i}\right) P\left(x_{i}\right) \tag{19}
\end{equation*}
$$

Example 3.3: A random voltage has $f_{X}(x)= \begin{cases}\frac{2}{5} x e^{\frac{-x^{2}}{5}} & x \geq 0 \\ 0 & x<0\end{cases}$
The voltage is applied to a device that generates a voltage $Y=g(x)=X^{2}$, which is equal to the power in 1Ω resistor. Find the average power in X ?

Solu: Power in $X=E[g(x)]=E\left[X^{2}\right]=\int_{0}^{\infty} x^{2} \frac{2 x}{5} e^{-x^{2} / 5} d x=\frac{2}{5} \int_{0}^{\infty} x^{3} e^{-x^{2} / 5} d x$
Let $\beta=\frac{x^{2}}{5}, d \beta=\frac{2 x}{5} d x$ and $\int x e^{c x} d x=e^{c x}\left[\frac{x}{c}-\frac{1}{c^{2}}\right]$
Power in $X=\int_{0}^{\infty} x^{2} e^{\frac{-x^{2}}{5}} \cdot \frac{2 x}{5} d x=\int_{0}^{\infty} 5 \beta e^{-\beta} d \beta=5\left[e^{-\beta}\left(\frac{\beta}{-1}-\frac{1}{1}\right)\right]_{0}^{\infty}=5[0-$ $(0-1)=5$ Watts

8. Moments

- An immediate application of the expected value of a function $g(\cdot)$ of a random variable X is in calculating moments.
- Two types of moments are of particular interest, those about the origin and those about the mean.
8.1 Moments about the origin
- The function $g(X)=X^{n}, n=0,1,2, \ldots$ gives the moments of the random variable X.
- Let us denote the $n^{\text {th }}$ moment about the origin by m_{n} then:

$$
\begin{equation*}
m_{n}=E\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f_{X}(x) d x \tag{20}
\end{equation*}
$$

$$
\begin{array}{ll}
m_{0}=1 & \text { is the area of the function } f_{x}(x) . \\
m_{1}=E[X] & \text { is the expected value of } X . \\
m_{2}=E\left[X^{2}\right] & \text { is the second moment of } X .
\end{array}
$$

8.2 Moments about the mean (Central moments)

- Moments about the mean value of X are called central moments and are given the symbol μ_{n}.
- They are defined as the expected value of the function

$$
\begin{equation*}
g(X)=(X-E[X])^{n}, n=0,1, \ldots . \tag{21}
\end{equation*}
$$

Which is

$$
\begin{equation*}
\mu_{n}=E\left[(X-E(X))^{n}\right]=\int_{-\infty}^{\infty}(x-E[X])^{n} f_{X}(x) d x \tag{22}
\end{equation*}
$$

Notes:

$$
\begin{aligned}
& u_{0}=1, \text { the area of } f_{X}(x) \\
& u_{1}=\int_{-\infty}^{\infty} x f_{X}(x) d x-E[X] \int_{-\infty}^{\infty} f_{X}(x) d x=0
\end{aligned}
$$

8.2.1 Variance

The variance is an important statistic and it measures the spread of $f_{X}(x)$ about the mean.

- The square root of the variance σ_{x}, is called the standard deviation.
- The variance is given by:

$$
\begin{equation*}
\sigma_{x}^{2}=u_{2}=E\left[(X-E(X))^{2}\right]=\int_{-\infty}^{\infty}(x-E[X])^{2} f_{X}(x) d x \tag{23}
\end{equation*}
$$

We have:

$$
\begin{equation*}
\sigma_{x}{ }^{2}=E\left[X^{2}\right]-E[X]^{2} \tag{24}
\end{equation*}
$$

- This means that the variance can be determined by the knowledge of the first and second moments.

Example 3.4: $f_{\mathrm{X}}(x)=\left\{\begin{array}{cc}\frac{1}{b} e^{-\frac{(x-a)}{b}} & x \geq a \\ 0 & x<a\end{array}\right.$

Find $\sigma_{x}{ }^{2}$?

Solu: $\sigma_{x}{ }^{2}=\int_{a}^{\infty}(x-\bar{x})^{2} \frac{1}{b} e^{\frac{-(x-a)}{b}} d x$
Let $\beta=x-\bar{x}, d \beta=d x, x=a \Rightarrow \beta=a-\bar{x}$
Then, $\sigma_{x}{ }^{2}=\int_{a-\bar{x}}^{\infty} \beta^{2} \frac{1}{b} e^{\frac{-(x-x+x-a)}{b}} d \beta$
$=\frac{e^{\frac{-(X-a)}{b}}}{b} \int_{a-\bar{x}}^{\infty} \beta^{2} e^{\frac{-\beta}{b}} d \beta$
From table: $\int x^{2} e^{c x} d x=e^{c x}\left[\frac{x^{2}}{c}-\frac{2 x}{c^{2}}+\frac{2}{c^{3}}\right]$

$$
\begin{gathered}
\Rightarrow \sigma_{x}^{2}=\frac{e^{\frac{-(\bar{x}-a)}{b}}}{b}\left[e^{\frac{-\beta}{b}}\left(-b \beta^{2}-2 b^{2} \beta-2 b^{3}\right)\right]_{a-\bar{x}}^{\infty} \\
=\frac{e^{\frac{-(\bar{x}-a)}{b}}}{b}\left[0-e^{\frac{-(\bar{x}-a)}{b}}\left(-b(a-\bar{x})^{2}-2 b^{2}(a-\bar{x})-2 b^{3}\right)\right] \\
=(a-\bar{x})^{2}-2 b(a-\bar{x})-2 b^{2}
\end{gathered}
$$

since $\bar{X}=E[X]=a+b($ see example 3.1$)$
$\sigma_{x}^{2}=(a-a-b)^{2}-2 b(a-a-b)-2 b^{2}=b^{2}+2 b^{2}-2 b^{2}=b^{2}$
Another solution: Use $\sigma_{x}{ }^{2}=E\left[X^{2}\right]-\bar{X}^{2}$

8.2.2 Skew

- The skew or third central moment is a measure of asymmetry of the density function about the mean.

$$
\begin{equation*}
u_{3}=E\left[(X-E(X))^{3}\right]=\int_{-\infty}^{\infty}(x-E[X])^{3} f_{X}(x) d x \tag{25}
\end{equation*}
$$

$\square u_{3}=0 \quad$ If the density is symetric about the mean

Example 3.5. Compute the skew of a density function uniformly distributed in the interval
$[-1,1]$.

Solution: $\quad f_{X}(x)=\left\{\begin{array}{cc}\frac{1}{2} & \text { for }-1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$
$E[X]=\int_{-\infty}^{+\infty} x f_{X}(x) d x=\int_{-1}^{+1} x \cdot \frac{1}{2} d x=\left.\frac{1}{2} \frac{x^{2}}{2}\right|_{-1} ^{1}=0$
$u_{3}=E\left[(X-E(X))^{3}\right]=\int_{-\infty}^{\infty}(x-E[X])^{3} f_{X}(x) d x=\int_{-1}^{1}(x)^{3} \frac{1}{2} d x=\left.\frac{1}{2} \frac{x^{4}}{4}\right|_{-1} ^{1}=0$

9. Functions that give moments

- The moments of a random variable X can be determined using two different functions: Characteristic function and the moment generating function.

9.1 Characteristic function

- The characteristic function of a random variable X is defined by:

$$
\begin{equation*}
\emptyset_{X}(\omega)=E\left[e^{j \omega x}\right] \tag{26}
\end{equation*}
$$

- $j=\sqrt{-1}$ and $-\infty<\omega<+\infty$
- $\emptyset_{X}(\omega)$ can be seen as the Fourier transform (with the sign of ω reversed) of $f_{X}(x)$:

$$
\begin{equation*}
\emptyset_{x}(\omega)=\int_{-\infty}^{\infty} f_{X}(x) e^{j w x} d x \tag{27}
\end{equation*}
$$

\square
If $\emptyset_{X}(\omega)$ is known then density function $f_{X}(x)$ and the moments of X can be computed.

- The density function is given by:

$$
\begin{equation*}
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \emptyset_{x}(\omega) e^{-j \omega x} d \omega \tag{28}
\end{equation*}
$$

- The moments are determined as follows:

$$
\begin{equation*}
m_{n}=\left.(-j)^{n} \frac{d^{n} \emptyset_{X}(\omega)}{d \omega^{n}}\right|_{\omega=0} \tag{29}
\end{equation*}
$$

- Note that $\left|\emptyset_{X}(\omega)\right| \leq \emptyset_{X}(0)=1$

Example 3.6: Let $f_{\mathrm{X}}(x)= \begin{cases}\frac{1}{b} e^{\frac{-(x-a)}{b}} d x & x \geq a \\ 0 & x<a\end{cases}$

Evaluate the characteristic function and first moment.

Solu: $\emptyset_{x}(\mathrm{w})=\int_{a}^{\infty} \frac{1}{b} e^{\frac{-(x-a)}{b}} e^{j w x} d x$

$$
\begin{aligned}
& =\frac{e^{a / b}}{b} \int_{a}^{\infty} e^{\left(-\frac{1}{b}+j w\right) x} d x=\left.\frac{e^{a / b}}{b\left(-\frac{1}{b}+j w\right)} e^{-\left(\frac{1}{b}+j w\right) x}\right|_{a} ^{\infty} \\
= & \frac{e^{a / b\left(0-e^{(-a / b+j a w)}\right)}}{-1+j b w}=\frac{e^{j a w}}{1-j b w} \\
m_{1}= & -\left.j \frac{d \emptyset_{x}(w)}{d w}\right|_{w=0} \\
= & -\left.j \frac{\left[j a e^{j a w}(1-j b w)-e^{j a w}(-j b)\right]}{(1-j b w)^{2}}\right|_{w=0} \\
= & -j \frac{[j a+j b]}{1}=-j^{2}[a+b]=a+b
\end{aligned}
$$

9.2 Moment generating function

- The moment generating function is given by:

$$
\begin{equation*}
M_{X}(v)=E\left[e^{v x}\right]=\int_{-\infty}^{\infty} f_{X}(x) e^{v x} d x \tag{30}
\end{equation*}
$$

Where v is a real number: $-\infty<v<\infty$

- Then the moments are obtained from the moment generating function using the following expression:

$$
\begin{equation*}
m_{n}=\left.\frac{d^{n} M_{X}(v)}{d v^{n}}\right|_{v=0} \tag{31}
\end{equation*}
$$

\square Compared to the characteristic function, the moment generating function may not exist for all random variables.

Example 3.7.: Compute $\mathrm{M}_{\mathrm{X}}(\mathrm{v})$ and m_{1} for the exponential r.v.

Solu: $M_{\mathbf{X}}(v)=\int_{a}^{\infty} \frac{1}{b} e^{\frac{-(x-a)}{b}} e^{v x} d x$

$$
\begin{aligned}
& =\frac{e^{a v}}{1-b v} \\
m_{1} & =\left.\frac{a e^{a v}(1-b v)+e^{a v} b}{(1-b v)}\right|_{v=0}=\mathrm{a}+\mathrm{b}
\end{aligned}
$$

10 Transformation of a random variable

- A random variable X can be transformed into another r.v. Y by:

$$
\begin{equation*}
Y=T(X) \tag{32}
\end{equation*}
$$

- Given $f_{X}(x)$ and $F_{X}(x)$, we want to find $f_{Y}(y)$, and $F_{Y}(y)$,
- We assume that the transformation T is continuous and differentiable.

10.1 Monotonic transformation

- A transformation T is said to be monotonically increasing $T\left(x_{1}\right)<T\left(x_{2}\right)$ for any $x_{1}<x_{2}$.
- T is said monotonically decreasing if $T\left(x_{1}\right)>T\left(x_{2}\right)$ for any $x_{1}<x_{2}$.

10.1.1 Monotonic increasing transformation

Figure 5. Monotonic increasing transformation

- In this case, for particular values x_{0} and y_{0} shown in figure 1 , we have:

$$
\begin{equation*}
y_{0}=T\left(x_{0}\right) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{0}=T^{-1}\left(y_{0}\right) \tag{34}
\end{equation*}
$$

- Due to the one-to-one correspondence between X and Y, we can write:

$$
\begin{gather*}
F_{Y}\left(y_{0}\right)=P\left\{Y \leq y_{0}\right\}=P\left\{X \leq T^{-1}\left(y_{0}\right)\right\}=F_{X}\left(x_{0}\right) \tag{35}\\
F_{Y}\left(y_{0}\right)=\int_{-\infty}^{y_{0}} f_{Y}(y) d y=\int_{-\infty}^{x_{0}} f_{X}(x) d x \tag{36}
\end{gather*}
$$

- Differentiating both sides with respect to y_{0} and using the expression $x_{0}=T^{-1}\left(y_{0}\right)$, we obtain:

$$
\begin{equation*}
f_{Y}\left(y_{0}\right)=f_{x}\left[T^{-1}\left(y_{0}\right)\right] \frac{d T^{-1}\left(y_{0}\right)}{d y_{0}} \tag{37}
\end{equation*}
$$

- This result could be applied to any y_{0}, then we have:

$$
\begin{equation*}
f_{Y}(y)=f_{X}\left[T^{-1}(y)\right] \frac{d T^{-1}(y)}{d y} \tag{38}
\end{equation*}
$$

- Or in compact form:

$$
\begin{equation*}
f_{Y}(y)=\left.f_{x}(x) \frac{d x}{d y}\right|_{x=T^{-1}(y)} \tag{39}
\end{equation*}
$$

10.1.2 Monotonic decreasing transformation

Figure 6. Monotonic decreasing transformation

- From Figure 2, we have

$$
\begin{gather*}
F_{Y}\left(y_{0}\right)=P\left\{Y \leq y_{0}\right\}=P\left\{X \geq x_{0}\right\}=1-F_{X}\left(x_{0}\right) \tag{40}\\
F_{Y}\left(y_{0}\right)=\int_{-\infty}^{y_{0}} f_{Y}(y) d y=1-\int_{-\infty}^{x_{0}} f_{X}(x) d x \tag{41}
\end{gather*}
$$

- Again Differentiating with respect to y_{0}, we obtain:

$$
\begin{equation*}
f_{Y}\left(y_{0}\right)=-f_{Y}\left[T^{-1}\left(y_{0}\right)\right] \frac{d T^{-1}\left(y_{0}\right)}{d y_{0}} \tag{42}
\end{equation*}
$$

- As the slope of $T^{-1}\left(y_{0}\right)$ is negative, we conclude that for both types of monotonic transformation, we have:

$$
\begin{equation*}
f_{Y}(y)=f_{X}(x)\left|\frac{d x}{d y}\right| \quad \text { and } \quad x=T^{-1}(y) \tag{43}
\end{equation*}
$$

Example 3.8: Let $\mathrm{Y}=\mathrm{aX}+\mathrm{b}$. Find $f_{Y}(y)$ given that $f_{X}(x)$ is Gaussian r.v. with mean a_{x} and standard deviation σ_{x}.

Solu: $Y=a X+b \Rightarrow X=\frac{\gamma-b}{a}$ and $\frac{d x}{d y}=\frac{1}{a}$
$\Rightarrow f_{Y}(y)=f_{X}\left(\frac{Y-b}{a}\right)\left|\frac{1}{a}\right|$
When $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{x}} e^{\frac{-(x-a x)^{2}}{2 \sigma_{x}^{2}}}$
Then $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{X}} e^{\frac{-\left|\frac{y-b}{a}-a_{x}\right|^{2}}{2 \sigma_{x}^{2}}}\left|\frac{1}{a}\right|$

$$
=\frac{1}{|a| \sqrt{2 \pi} \sigma_{x}} e^{\frac{-\left|y-\left(b+a a_{x}\right)\right|^{2}}{2 a^{2} \sigma_{x}^{2}}}
$$

Y is also Gaussian with mean and variance:

$$
a_{Y}=a a_{x}+b \quad \text { and } \quad \sigma_{Y}^{2}=a^{2} \sigma_{x}^{2}
$$

a. Non-monotonic transformation

- In general, a transformation could be non monotonic as shown in figure 3

Figure 7. A non-monotonic transformation

- In this case, more than one interval of values of X that correspond to the event $P\left(Y \leq y_{0}\right)$
- For example, the event represented in figure 7 corresponds to the event $\{X \leq$ x_{1} and $\left.x_{2} \leq X \leq x_{3}\right\}$.
- In general for non-monotonic transformation:

$$
\begin{equation*}
f_{Y}(y)=\sum_{j=1}^{N} \frac{f_{X}\left(x_{j}\right)}{\left|\frac{d T(x)}{d x}\right|_{x=x_{j}}} \tag{44}
\end{equation*}
$$

Where $x_{j}, j=1,2, \ldots ., N$ are the real solutions of the equation $T(x)=y$

Example 3.9: Let $\mathrm{Y}=\mathrm{T}(\mathrm{x})=\mathrm{cX}^{2} ; \mathrm{c}>0$.
Given $f_{X}(x)$, find $f_{Y}(y)$?
Solu: $Y=c X^{2} \Rightarrow x_{1}=\sqrt{\frac{y}{c}}, \quad x_{2}=-\sqrt{\frac{y}{c}}$
$y^{\prime}=2 c x$
$f_{Y}(y)=\frac{f_{x}\left(\sqrt{\frac{y}{c}}\right)}{\left|2 c \sqrt{\frac{y}{c}}\right|}+\frac{f_{x}\left(-\sqrt{\frac{y}{c}}\right)}{\left|2 c \sqrt{\frac{y}{c}}\right|}$
$f_{Y}(y)=\frac{f_{x}\left(\sqrt{\frac{y}{c}}\right)+f_{x}\left(-\sqrt{\frac{y}{c}}\right)}{2 \sqrt{c y}} ; y \geq 0$

