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1. Introduction   

 

 In Chapter 1, we introduced the concept of event to describe the characteristics of 

outcomes of an experiment. 

 Events allowed us more flexibility in determining the proprieties of the experiments better 

than considering the outcomes themselves. 

 In this chapter, we introduce the concept of random variable, which allows us to define 

events in a more consistent way.     

 In this chapter, we present some important operations that can be performed on a random 

variable.  

 Particularly, this chapter will focus on the concept of expectation and variance. 

2. The random variable concept  

 

 A random variable X is defined as a real function that maps the elements of sample space S 

to real numbers (function that maps all elements of the sample space into points on the real 

line).  

𝑋: 𝑆 ⟶  ℝ 

 A random variable is denoted by a capital letter (such as: 𝑋, 𝑌, 𝑍) and any particular value 

of the random variable by a lowercase letter (such as:  𝑥, 𝑦, 𝑧).  

 We assign to s (every element of S) a real number X(s) according to some rule and call X(s) a 

random variable. 

 

Example 2.1:  

An experiment consists of flipping a coin and rolling a die.  

Let the random variable X chosen such that:  

A coin head (H) corresponds to positive values of X equal to the die number 

A coin tail (T) corresponds to negative values of X equal to twice the die number. 
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Plot the mapping of S into X. 

 

Solution 2.1: 

The random variable X maps the samples space of 12 elements into 12 values of X from -12 to 6 

as shown in Figure 1.  

 

Figure 1. A random variable mapping of a sample space. 

 

 Discrete random variable: If a random variable X can take only a particular finite or 

counting infinite set of values 𝑥1, 𝑥2, … , 𝑥𝑁, then X is said to be a discrete random variable.  

 

 Continuous random variable: A continuous random variable is one having a continuous 

range of values. 

 

3. Distribution function  

 

 If we define 𝑃(𝑋 ≤ 𝑥) as the probability of the event  𝑋 ≤ 𝑥  then the cumulative 

probability  distribution function 𝑭𝑿(𝒙) or often called distribution function of 𝑋 is defined 

as: 

                                                   X 
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𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥)   𝑓𝑜𝑟  − ∞ < 𝑥 < ∞                      (1)       

    

 

 

 The argument 𝑥 is any real number ranging from −∞ to ∞. 

 

 Proprieties:  

1) 𝐹𝑋(−∞) = 0  
2) 𝐹𝑋(∞) = 1  

(𝑠𝑖𝑛𝑐𝑒 𝐹𝑋 is a probability, the value of the distribution function is always between 

0 and 1). 

3) 0 ≤ 𝐹𝑋(𝑥) ≤ 1  

4) 𝐹𝑋(𝑥1) ≤ 𝐹𝑋(𝑥2)  if    𝑥1 < 𝑥2     (event {𝑋 ≤ 𝑥1} is contained in the event {𝑋 ≤

𝑥2} , monotically increasing function) 

5) 𝑃(𝑥1 < 𝑋 ≤ 𝑥2) = 𝐹𝑋(𝑥2) − 𝐹𝑋(𝑥1)   

6) 𝐹𝑋(𝑥
+) = 𝐹𝑋(𝑥),   where 𝑥+ = 𝑥 + 휀    and 휀 → 0   (Continuous from the right) 

 

 For a discrete random variable X, the distribution function  𝐹𝑋(𝑥) must have a "stairstep 

form" such as shown in Figure 2. 

 

Probability mass function 
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Figure 2. Example of a distribution function of a discrete random variable. 

 

 The amplitude of a step equals to the probability of occurrence of the value X where the 

step occurs, we can write: 

 

 

  𝐹𝑋(𝑥) = ∑ 𝑃(𝑥𝑖) ∙ 𝑢(𝑥 − 𝑥𝑖)
𝑁
𝑖=1          (2) 

 

 

 

4. Density function  

 

 The probability density function (pdf), denoted by 𝒇𝑿(𝒙) is defined as the derivative of the 

distribution function:  

 

 

𝑓𝑋(𝑥) =
𝑑𝐹𝑋(𝑥)

𝑑𝑥
                                                                                                             (3) 

 

 𝑓𝑋(𝑥) is often called the density function of the random variable X. 

   Unit step function: 𝑢(𝑥) = {
1     𝑥 ≥ 0
0    𝑥 < 0

  

𝑃(𝑋 = 𝑥𝑖) 

𝐹𝑋(𝑥) = ∫ 𝑓
𝑋
(𝜃)𝑑𝜃

𝑥

−∞
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 For a discrete random variable,  this density function is given by:  

 

𝑓𝑋(𝑥) = ∑ 𝑃(𝑥𝑖)𝛿(𝑥 − 𝑥𝑖)
𝑁
𝑖=1                                                                  (4) 

 

 

 

 

 

 

 

 

 Proprieties:  

 𝑓𝑋(𝑥) ≥ 0   for all 𝑥 

 𝐹𝑋(𝑥) = ∫ 𝑓𝑥(𝜃)𝑑𝜃
𝑥

−∞
 

 ∫ 𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
= 𝐹𝑋(∞) − 𝐹𝑋(−∞) = 1 

 𝑃(𝑥1 < 𝑋 ≤ 𝑥2) = 𝐹𝑋(𝑥2) − 𝐹𝑋(𝑥1) = ∫ 𝑓𝑋(𝜃)𝑑𝜃
𝑥2

𝑥1
   

 

Example 2.2: 

Let X be a random variable with discrete values in the set {-1, -0.5, 0.7, 1.5, 3}. The 

corresponding probabilities are assumed to be {0.1, 0.2, 0.1, 0.4, 0.2}. 

a) Plot 𝐹𝑋(𝑥), 𝑎𝑛𝑑 𝑓𝑋(𝑥)   

b) Find 𝑃(𝑥 < −1),   𝑃(−1 < 𝑥 ≤ −0.5)   

Solution 2.2:  

a)   

 

   𝛿  Unit impulse function: 𝛿(𝑥) = {
1           𝑥 = 0
   0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  



CEN 343                                                                                                                                Chapter 2: The random variable  
 

7 
 

 

 

b) P(X<-1) = 0 because there are no sample space points in the set {X<-1}. Only when X=-1 do 

we obtain one outcome and we have immediate jump in probability of 0.1 in 𝐹𝑋(𝑥). For -1<x<-

0.5 there are no additional space points so 𝐹𝑋(𝑥) remains constant at the value 0.1. 

𝑃(−1 < 𝑋 ≤ −05) = 𝐹𝑋(−0.5) − 𝐹𝑋(−1) = 0.3 − 0.1 = 0.2 

Example 3: 

Find the constant c such that the function: 

𝑓𝑋(𝑥) = {
𝑐 ∙ 𝑥    0 ≤ 𝑥 ≤ 3
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

is a valid probability density function (pdf) 

Compute 𝑃(1 < 𝑥 ≤ 2) 
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Find the cumulative distribution function 𝐹𝑋(𝑥) 

Solution:  

 

 

 

 

5. Examples of distributions  

Discrete random variables Continuous random variables 

 Binominal distribution 

 Poisson distribution 

 

 Gaussian (Normal) distribution 

 Uniform distribution 

 Exponential  distribution 

 Rayleigh distribution 

 

The Gaussian distribution 

 The Gaussian or normal distribution is on the important distributions as it describes many 

phenomena. 

 A random variable X is called Gaussian or normal if its density function has the form:  

𝑓𝑋(𝑥) =
1

√2𝜋𝜎𝑥2
𝑒
−
(𝑥−𝑎)2

 2𝜎𝑥2                                                                  (5) 

𝜎𝑥 > 0 and 𝑎  are, respectively the mean and the standard deviation of X which measures the 
width of the function. 
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Figure 3. Gaussian density function  
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Figure 3. Gaussian density function  
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Figure 4. Gaussian density function with a =0 and different values of  𝜎𝑥 
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 The distribution function is:  

𝐹𝑋(𝑥)  =  
1

√2𝜋𝜎𝑥2
∫ 𝑒

−(𝜃−𝑎)2

2𝜎𝑥2 𝑑𝜃                                                  (5)
𝑥

−∞

 

 

     This integral has no closed form solution and must be solved by numerical methods. 

 

 

 

 

 

 

 

  

 To make the results of FX(x) available for any values of x, a, 𝜎𝑥, we define a standard normal 

distribution with mean a = 0 and standard deviation 𝜎𝑥 = 1, denoted N(0,1): 

 𝑓(𝑥) =
1

 2𝜋
𝑒−

𝑥2

2                   (6) 

               𝐹(𝑥)  =
1

 2𝜋
∫ 𝑒−

𝛽2

2
𝑥

−∞
𝑑𝛽             (7) 

 Then, we use the following relation: 

  𝐹𝑍(z) =  𝐹𝑋 (
𝑥−a

σ𝑥
)                                                                                                                       (8)    

 To extract the corresponding values from an integration table developed for N(0,1). 

 

 
 

0.159 

0.5 

0 a+σx 

Fx(x) 

x 

 

a-σx 

 

1 

a 

0.84 
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Example 4: 

Find the probability of the event {X ≤ 5.5} for a Gaussian random variable with a=3 and 𝜎𝑥 = 2 

Solution:  

𝑃{𝑋 ≤ 5.5}  =  𝐹𝑍(5.5)  =  𝐹𝑋(
5.5 − 3

2
) = 𝐹𝑋(1.25) 

Using the table, we have: 𝑃{𝑋 ≤ 5.5} = 𝐹𝑋(1.25) = 0.8944 

 

Example 5: 

In example 4, find P{X > 5.5} 

Solution:  

  𝑃{𝑋 > 5.5} = 1 − 𝑃{𝑋 ≤ 5.5} 

          = 1 − 𝐹(1.25) = 0.1056 

 

 

6. Other distributions and density examples  

The Binomial distribution 

 The binomial density can be applied to the Bernoulli trial experiment which has two 

possible outcomes on a given trial. 

 The density function 𝑓𝑥(𝑥) is given by: 

 𝑓𝑋(𝑥)  = ∑ (𝑁
𝑘
)𝑝𝐾𝑁

𝑘=0 (1 − 𝑝)𝑁−𝑘𝛿(𝑥 − 𝑘)                   (9) 

Where (𝑁
𝑘
) =

𝑁!

(𝑁−𝑘)!𝑘!
    and  𝛿(𝑥) = {

1   𝑥 = 0
0    𝑥 ≠ 0
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 Note that this is a discrete r.v. 

 The Binomial distribution 𝐹𝑋(𝑥) is: 

  𝐹𝑋(𝑥)  = ∫ ∑ (𝑁
𝑘
)𝑁

𝑘=0
𝑥

−∞
𝑝𝑘(1 − 𝑝)𝑁−𝑘𝛿(𝑥 − 𝑘)          (10) 

  = ∑ (𝑁
𝑘
)𝑝𝑘(1 − 𝑝)𝑁−𝑘𝑢(𝑥 − 𝑘)𝑁

𝑘=0  

The Uniform distribution 

 The density and distribution functions of the uniform distribution are given by: 

𝑓𝑋(𝑥)  = {
1

𝑏 − 𝑎
     𝑎 ≤ 𝑥 ≤ 𝑏

0                  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                                                                (11) 

𝐹𝑋(𝑥)  = {

0                   𝑥 < 𝑎
(𝑥−𝑎)

(𝑏−𝑎)
        𝑎 ≤ 𝑥 < 𝑏

1                  𝑥 ≥ 𝑏

                                                                      (12) 

 

 

 

 

 

 

The Exponential distribution 

 The density and distribution functions of the exponential distribution are given by: 

0 

fX(x) 

x 

 

1

(𝑏 − 𝑎)
 

a b a b 
0 

FX(x) 

x 

 

1 
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𝑓𝑋(𝑥)  = {
1

𝑏
𝑒
−(𝑥−𝑎)

𝑏
      𝑥 ≥ 𝑎

0                  𝑥 < 𝑎
                (13) 

𝐹𝑋(𝑥) {1 − 𝑒
−(𝑥−𝑎)

𝑏     𝑥 ≥ 𝑎
0                     𝑥 < 𝑎

              (14) 

where  b  >  0 

 

 

 

 

 

 

 

 

 

7. Expectation  

 

 Expectation is an important concept in probability and statistics. It is called also expected 

value, or mean value or statistical average of a random variable.  

 The expected value of a random variable X is denoted by E[X] or �̅� 

 If X  is a continuous random variable with probability density function 𝑓𝑋(𝑥), then: 

𝐸[𝑋] = ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥
+∞

−∞
                                                                                           (15) 

 If X is a discrete random variable having values 𝑥1, 𝑥2, … , 𝑥𝑁, that occurs with probabilities 

𝑃(𝑥𝑖),  we have   

𝑓𝑋(𝑥) =∑𝑃(𝑥𝑖)𝛿(𝑥 − 𝑥𝑖)

𝑁

𝑖=1

                                                                              (16) 

  Then the expected value 𝐸[𝑋] will be given by: 

 

 

0 

fX(x) 

x 

 

1

𝑏
 

a 

 

0 

FX(x) 

x 

 

1 

a 
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𝐸[𝑋] = ∑ 𝑥𝑖𝑃(𝑥𝑖)
𝑁
𝑖=1                                                                                              (17) 

 

 

 

 

7.1 Expected value of a function of a random variable  

 Let be X a random variable then the function g(X) is also a random variable, and its expected 

value 𝐸[𝑔(𝑋)] is given by 

𝐸[𝑔(𝑋)] = ∫ 𝑔(𝑥)𝑓𝑋(𝑥)𝑑𝑥

∞

−∞

                                                                                          (18) 
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 If X is a discrete random variable then 

𝐸[𝑔(𝑋)] =∑𝑔(𝑥𝑖)𝑃(𝑥𝑖)

𝑁

𝑖=1

                                                                                          (19) 

 

 

8. Moments  

 

 An immediate application of the expected value of a function 𝑔(∙) of a random variable 𝑋  is 

in calculating moments. 

 Two types of moments are of particular interest, those about the origin and those about 

the mean.  

8.1 Moments about the origin  

 The function  𝑔(𝑋) = 𝑋𝑛, 𝑛 = 0, 1, 2, …  gives the moments of the random variable 𝑋.  

 Let us denote the 𝑛𝑡ℎ  moment about the origin by 𝑚𝑛 then: 

 

𝑚𝑛 =  𝐸[𝑋𝑛] =  ∫ 𝑥𝑛𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
        (20) 
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                               𝑚0 = 1            is the area of the function 𝑓𝑥(𝑥). 

                               𝑚1 = 𝐸[𝑋]      is the expected value of 𝑋. 

                               𝑚2 = 𝐸[𝑋2]     is the second moment of  𝑋. 

 

8.2 Moments about the mean (Central moments)  

 Moments about the mean value of X are called central moments and are given the 

symbol 𝜇𝑛.  

 They are defined as the expected value of the function  

 

                            𝑔(𝑋) =  (𝑋 − 𝐸[𝑋])𝑛, 𝑛 = 0,1, ….                                                                     (21) 

Which is 

𝜇𝑛 = 𝐸[(𝑋 − 𝐸(𝑋))𝑛] = ∫ (𝑥 − 𝐸[𝑋])𝑛𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

                                      (22) 

Notes: 

                            𝑢0 =  1, the area of 𝑓𝑋(𝑥) 

            𝑢1 = ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
− 𝐸[𝑋] ∫ 𝑓𝑋(𝑥)𝑑𝑥

∞

−∞
= 0  

8.2.1 Variance  

The variance is an important statistic and it measures the spread of 𝑓𝑋(𝑥) about the mean.  

 The square root of the variance 𝜎𝑥, is called the standard deviation. 

 The variance is given by: 

𝜎𝑥
2 = 𝑢2 = 𝐸 [(𝑋 − 𝐸(𝑋))

2
] = ∫ (𝑥 − 𝐸[𝑋])2𝑓𝑋(𝑥)𝑑𝑥                                    (23)

∞

−∞

 

We have:  

𝜎𝑥
2 = 𝐸[𝑋2] − 𝐸[𝑋]2                                                                  (24) 
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 This means that the variance can be determined by the knowledge of the first and second 

moments. 
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8.2.2 Skew 

 The skew or third central moment is a measure of asymmetry of the density function about 

the mean. 

𝑢3 = 𝐸 [(𝑋 − 𝐸(𝑋))
3
] = ∫ (𝑥 − 𝐸[𝑋])3𝑓𝑋(𝑥)𝑑𝑥                                    (25)

∞

−∞

 

    

      𝑢3 = 0         If the density is symetric about the mean  

 

Example 3.5. Compute the skew of a density function uniformly distributed in the interval  

[-1, 1]. 

Solution:           𝑓𝑋(𝑥) = {

 
1

2
 𝑓𝑜𝑟 − 1 ≤ 𝑥 ≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐸[𝑋] = ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥
+∞

−∞

= ∫ 𝑥.
1

2
𝑑𝑥

+1

−1

=
1

2
 
𝑥2

2
|
−1

1

= 0  

𝑢3 = 𝐸 [(𝑋 − 𝐸(𝑋))
3
] = ∫ (𝑥 − 𝐸[𝑋])3𝑓𝑋(𝑥)𝑑𝑥

∞

−∞

= ∫ (𝑥)3
1

2
𝑑𝑥

1

−1

=
1

2
 
𝑥4

4
|
−1

1

= 0 

 

9. Functions that give moments   

 

 The moments of a random variable X can be determined using two different functions: 

Characteristic function and the moment generating function. 
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9.1 Characteristic function 

 The characteristic function of a random variable X is defined by: 

 

∅𝑋(ω) = 𝐸[𝑒𝑗𝜔𝑥]             (26) 

  

 𝑗 =  −1  and −∞ < ω < +∞ 

 ∅𝑋(ω)   can be seen as the Fourier transform (with the sign of ω  reversed) of  𝑓𝑋(𝑥): 

 

∅𝑥(ω) = ∫ 𝑓𝑋(𝑥)𝑒
𝑗𝑤𝑥𝑑𝑥

∞

−∞
           (27) 

                If  ∅𝑋(ω)  is known then density function 𝑓𝑋(𝑥)  and the moments of X can be                

computed. 

 The density function is given by: 

 𝑓𝑋(𝑥) =
1

2𝜋
∫ ∅𝑥(ω)𝑒

−𝑗𝜔𝑥𝑑𝜔
∞

−∞
                                                                          (28) 

 The moments are determined as follows: 

  

𝑚𝑛 = (−𝑗)
𝑛
𝑑𝑛∅𝑋(ω)

𝑑𝜔𝑛
|
𝜔=0

                                                                                 (29) 

 

 

 Note that |∅𝑋(ω)| ≤ ∅𝑋(0) = 1 

Differentiate n times with 

respect to 𝜔 and set 𝜔 = 0 in 

the derivative    
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9.2 Moment generating function 

 The moment generating function is given by: 

𝑀𝑋(𝑣) =  𝐸[𝑒𝑣𝑥] = ∫ 𝑓𝑋(𝑥)𝑒
𝑣𝑥𝑑𝑥

∞

−∞

                                                                                 (30) 

Where 𝑣 is a real number:  −∞ < 𝑣 < ∞ 

 Then the moments are obtained from the moment generating function using the following 

expression: 

𝑚𝑛 = 
𝑑𝑛𝑀𝑋(𝑣)

𝑑𝑣𝑛
|
𝑣=0

                                                                                 (31) 

                Compared to the characteristic function, the moment generating function may not                  
exist for all random variables.  
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10 Transformation of a random variable  

 

 A random variable X can be transformed into another r.v. Y by:  

𝑌 = 𝑇(𝑋)          (32) 

 Given 𝑓𝑋(𝑥) and 𝐹𝑋(𝑥), we want to find 𝑓𝑌(𝑦), and 𝐹𝑌(𝑦),  

 We assume that the transformation 𝑇 is continuous and differentiable. 

 

 

 

 

10.1 Monotonic transformation   

 A transformation T is said to be monotonically increasing 𝑇(𝑥1) < 𝑇(𝑥2) for any  𝑥1 < 𝑥2.  

 T is said monotonically decreasing if  𝑇(𝑥1) > 𝑇(𝑥2)  for any 𝑥1 < 𝑥2.  

 

 

 

 

 

 

𝑌 = 𝑇(𝑋) 𝑋 𝑌 

𝑓𝑋(𝑥) 𝑓𝑌(𝑦)  
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10.1.1 Monotonic increasing transformation  

 

 

 

 

 

Figure 5. Monotonic increasing transformation 

 

 In this case, for particular values 𝑥0 and 𝑦0 shown in figure 1, we have: 

 

𝑦0 = 𝑇(𝑥0)          (33) 

and 

𝑥0 = 𝑇−1(𝑦0)          (34) 

 

 Due to the one-to-one correspondence between X and Y, we can write: 

𝐹𝑌(𝑦0) = 𝑃{𝑌 ≤ 𝑦0} = 𝑃{𝑋 ≤ 𝑇−1(𝑦0)} = 𝐹𝑋(𝑥0)        (35) 

𝐹𝑌(𝑦0) = ∫ 𝑓𝑌(𝑦)𝑑𝑦 = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑥0

−∞

𝑦0

−∞
       (36) 

 

 Differentiating  both sides with respect to 𝑦0 and using the expression 𝑥0 = 𝑇−1(𝑦0), we 

obtain: 

𝑓𝑌(𝑦0) = 𝑓𝑥[𝑇
−1(𝑦0)]

𝑑 𝑇−1(𝑦0)

𝑑𝑦0
      (37) 

 

y=T(x) 

x 

y0 

𝑌 ≤ 𝑦0 
𝑋 ≤ 𝑥0 

x0= T-1(y0) 
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 This result could be applied to any 𝑦0, then we have:  

𝑓𝑌(𝑦) = 𝑓𝑋[𝑇
−1(𝑦)]

𝑑 𝑇−1(𝑦)

𝑑𝑦
       (38) 

 

 Or in compact form:  

𝑓𝑌(𝑦) = 𝑓𝑥(𝑥)
𝑑𝑥

𝑑𝑦
|
𝑥=𝑇−1(𝑦)

                      (39) 

10.1.2 Monotonic decreasing transformation  

  

 

 

 

 

 

 

 

 

 

Figure 6. Monotonic decreasing transformation 

 

 From Figure 2, we have  

𝐹𝑌(𝑦0) = 𝑃{𝑌 ≤ 𝑦0} = 𝑃{𝑋 ≥ 𝑥0} = 1 − 𝐹𝑋(𝑥0)     (40) 

𝐹𝑌(𝑦0) = ∫ 𝑓𝑌(𝑦)𝑑𝑦 = 1 −∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑥0

−∞

𝑦0

−∞

                                                                  (41) 

 

 Again Differentiating with respect to y0, we obtain: 

𝑓𝑌(𝑦0) = −𝑓𝑌[𝑇
−1(𝑦0)]

𝑑𝑇−1(𝑦0)

𝑑𝑦0
                                                                            (42) 

x0= T-1(y0) 

y=T(x) 

x 

 y0 

𝑌 ≤ 𝑦0 

𝑋 ≥ 𝑥0 
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 As the slope of 𝑇−1(𝑦0) is negative, we conclude that for both types of monotonic 

transformation, we have: 

 

𝑓𝑌(𝑦) = 𝑓𝑋(𝑥) |
𝑑𝑥

𝑑𝑦
|    𝑎𝑛𝑑    𝑥 = 𝑇−1(𝑦)                                                           (43) 

 

 

 

 

a. Non-monotonic transformation  

 In general, a transformation could be non monotonic as shown in figure 3 
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Figure 7. A non-monotonic transformation   

 

 In this case, more than one interval of values of X that correspond to the event 𝑃(𝑌 ≤ 𝑦0) 

 For example, the event represented in figure 7 corresponds to the event   {𝑋 ≤

𝑥1 𝑎𝑛𝑑 𝑥2 ≤ 𝑋 ≤ 𝑥3 }. 

 

 In general for non-monotonic transformation: 

 

𝑓𝑌(𝑦) =∑
𝑓𝑋(𝑥𝑗)

|
𝑑𝑇(𝑥)
𝑑𝑥

|
𝑥=𝑥𝑗

𝑁

𝑗=1

                                                                         (44) 

 

Where xj , j= 1,2,. .  .,N are the real solutions of the equation 𝑇(𝑥) = 𝑦 
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