CHAPTER 2

CLASSICAL ENCRYPTION TECHNIQUES

SYMMETRIC ENCRYPTION

or conventional / private-key / single-key
sender and recipient share a common key
Since both sender and receiver are equivalent, either can encrypt or decrypt messages using that common key.
all classical encryption algorithms use a private-key

SOME BASIC TERMINOLOGY

* plaintext - original message
* ciphertext - coded message
* cipher - algorithm for transforming plaintext to ciphertext
* key - info used in cipher known only to sender/receiver
* encipher (encrypt) - converting plaintext to ciphertext
x decipher (decrypt) - converting ciphertext to plaintext
x cryptography - study of encryption principles / methods
x cryptanalysis (codebreaking) - study of deciphering ciphertext principles / methods without knowing key
* cryptology - field of both cryptography and cryptanalysis

SYMMETRIC CIPHER MODEL

The five components of the symmetric cipher model:

Plaintext - original message
Encryption algorithm - performs substitutions/transformations on plaintext
Secret key - control exact substitutions/transformations used in encryption algorithm
Ciphertext - scrambled message
Decryption algorithm - inverse of encryption algorithm

REQUIREMENTS

* Two requirements for secure use of symmetric encryption:
+ a strong encryption algorithm
+ a secret key known only to sender / receiver
x mathematically have:
plaintext X, ciphertext Y, key K, encryption algorithm E, decryption algorithm D

$$
\begin{aligned}
& Y=E(K, X) \\
& X=D(K, Y)
\end{aligned}
$$

* Assume encryption algorithm is known
* Implies a secure channel to distribute key

CRYPTOGRAPHY

* Cryptographic system can be characterized by:

1. The type of operations used for transforming plaintext to ciphertext :

All encryption algorithms are based on two general principles :
substitution: in which each element in the plaintext (bit, letter, group of bits or letters) is mapped into another element, and
Transposition: in which elements in the plaintext are rearranged.

Most systems, referred to as product systems, involve multiple stage of substitutions and transpositions.
2. The number of keys used

Symmetric, single-key, secret-key, or conventional encryption: If both sender and receiver use the same key.
Asymmetric, two-key, or public-key encryption: If the sender and receiver use different keys.
3. The way in which the plaintext is processed

A block cipher processes the input one block of elements at a time, producing an output block for each input block.
A stream cipher processes the input elements continuously, producing output one element at a time, as it goes along.

CRYPTANALYSIS

To recover key not just message, there are two general approaches:
Cryptanalysis: relies on the nature of the algorithm plus some knowledge of the general characteristics of the plaintext or even some sample plaintext-ciphertext pairs. This type of attack exploits the characteristics of the algorithm to attempt to deduce a specific plaintext or the key being used.
Brute-force attacks try every possible key on a piece of ciphertext until an intelligible translation into plaintext is obtained. On average, half of all possible keys must be tried to achieve success.

THE VARIOUS TYPES OF CRYPTANALYTIC ATTACKS BASED ON THE AMOUNT OF INFORMATION KNOWN TO THE CRYPTANALYST

Type of Attack	Known to Cryptanalyst
Ciphertext Only	* Encryption algorithm - Ciphertext
Known Plaintext	- Encryption algorithm - Ciphertext - One or more plaintext-ciphertext pairs formed with the secret key
Chosen Plaintext	- Encryption algorithm - Ciphertext
- Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext	
generated with the secret key	

DEFINITIONS

- unconditional security
- If the ciphertext generated by the scheme does not contain enough information to determine uniquely the corresponding plaintext, no matter how much ciphertext is available.
> computational security
- If either the cost of breaking the cipher exceeds the value of the encrypted information, or the time required to break the cipher exceeds the useful lifetime of the information.

For all reasonable encryption algorithms, we have to assume computational security where it either takes too long, or is too expensive, to bother breaking the cipher.

BRUTE FORCE SEARCH

- always possible to simply try every key
> most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/ $\boldsymbol{\mu s}$		Time required at 10 $\mathbf{0}^{6}$ decryptions $/ \boldsymbol{\mu s}$
32	$2^{32}=4.3 \times 10^{9}$	$2^{31} \mu \mathrm{~s} \quad=35.8$ minutes	2.15 milliseconds	
56	$2^{56}=7.2 \times 10^{16}$	$2^{55} \mu \mathrm{~s}$	$=1142$ years	10.01 hours
128	$2^{128}=3.4 \times 10^{38}$	$2^{127} \mu \mathrm{~s}$	$=5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168}=3.7 \times 10^{50}$	$2^{167} \mu \mathrm{~s} \quad=5.9 \times 10^{36}$ years	5.9×10^{30} years	
26 characters (permutation)	$26!=4 \times 10^{26}$	$2 \times 10^{26} \mu \mathrm{~s}=6.4 \times 10^{12}$ years	6.4×10^{6} years	

A brute-force attack involves trying every possible key until an intelligible translation of the ciphertext into plaintext is obtained. On average, half of all possible keys must be tried to achieve success.

CLASSICAL SUBSTITUTION CIPHERS

Where letters of plaintext are replaced by other letters or by numbers or symbols, or

If plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

CAESAR CIPHER

- Earliest known substitution cipher. The core idea is to replace one basic unit (letter/byte) with another.

By Julius Caesar

First attested use in military affairs
Replaces each letter by 3rd letter on example:

$$
\begin{aligned}
& \text { plain: meet me after the toga party } \\
& \text { cipher: PHHW PH DIWHU WKH WRJD SDUWB }
\end{aligned}
$$

CAESAR CIPHER

* can define transformation as:
 mathematically give each letter a number

a	b	c	d	e	f	e	h	i	j	k	l	m
0	l	2	3	4	5	6	7	8	9	10	11	12

\boldsymbol{n}	o	p	q	\mathbb{r}	s	t	u	v	w	x	y	z
13	14	15	16	17	18	19	20	21	22	23	24	25

then have Caesar cipher as:
$c=E(k, p)=(p+k) \bmod (26)$
$p=D(k, c)=(c-k) \bmod (26)$

CRYPTANALYSIS OF CAESAR CIPHER

> only have 26 possible ciphers

- A maps to A,B,..Z
could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters to recognize when have plaintext
- ex., break ciphertext "GCUA VQ DTGCM" gives "easy to break", with a shift of 2 (key C).

BREAK CIPHERTEXT "PHHW PH DIWHU WKH KRJD SDUWB"

KEY	PHHW PH DIWHU wKH WRJD SDUWB
1	oggv og chvgt vjg vqic rctva
2	nffu nf bgufs uif uphb qbsuz
3	meet me after the toga party
4	ldds ld zesdq sgd snfz ozqsx
5	kccr kc ydrcp rfc rmey nyprw
6	jbbq jb xcqbo qeb qldx mxoqv
7	iaap ia wbpan pda pkcw lwnpu
8	hzzo hz vaozm ocz ojbv kvmot
9	gyyn gy uznyl nby niau julns
10	fxxm fx tymxk max mhzt itkmr
11	ewwl ew sxlwj lzw lgys hsjlq
12	dvvk dv rwkvi kyv kfxr grikp
13	cuuj cu qvjuh jxu jewq fqhjo
14	btti bt puitg iwt idvp epgin
15	assh as othsf hvs hcuo dofhm
16	zrrg zr nsgre gur gbtn cnegl
17	yqqf yq mrfqd ftq fasm bmdfk
18	xppe xp lqepc esp ezrl alcej
19	wood wo kpdob dro dyqk zkbdi
20	vnnc vn jocna cqn cxpj yjach
21	ummb um inbmz bpm bwoi xizbg
22	tlla tl hmaly aol avnh whyaf
23	skkz sk glzkx znk zumg vgxze
24	rjjy rj fkyjw ymj ytlf ufwyd
25	qiix qi ejxiv xli xske tevxc

MONOALPHABETIC CIPHER

Rather than just shifting the alphabet, could shuffle (jumble) the letters arbitrarily

- Each plaintext letter maps to a different random ciphertext letter, hence key is 26 letters long

Plain : abcdefghijklmnopqrstuvwxyz
Cipher : DKVQFIBJWPESCXHTMYAUOLRGZN
Plaintext : ifwewishtoreplaceletters
Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

MONOALPHABETIC CIPHER SECURITY

\times Have a total of $26!=4 \times 10^{26}$ keys
x with so many keys, might think is secure, but would be !!!WRONG!!!
problem is language characteristics

LANGUAGE REDUNDANCY AND CRYPTANALYSIS

- human languages are redundant
- eg "th Ird s m shphrd shll nt wnt"
- letters are not equally commonly used, in English E is by far the most common letter
- followed by T,R,N,I,O,A,S
* other letters like Z,J,K,Q,X are fairly rare
- have tables of single, double \& triple letter frequencies for various languages

ENGLISH LETTER FREQUENCIES

USE IN CRYPTANALYSIS

* key concept - Monoalphabetic substitution ciphers do not change relative letter frequencies
* discovered by Arabian scientists in $9^{\text {th }}$ century
x calculate letter frequencies for Ciphertext
* compare counts/plots against known values
* if Caesar cipher looks for common peaks/troughs
+ peaks at: A-E-I triple, NO pair, RST triple
+ troughs at: JK, X-Z
\times for Monoalphabetic must identify each letter
+ tables of common double/triple letters help

EXAMPLE CRYPTANALYSIS

* given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

* count relative letter frequencies (see text)
* guess P \& Z are e and t
x guess ZW is th and hence ZWP is the
\times proceeding with trial and error finally get:

```
it was disclosed yesterday that several informal but
direct contacts have been made with political
representatives of the viet cong in moscow
```


PLAYFAIR CIPHER

- Not even the large number of keys in a monoalphabetic cipher provides security
- one approach to improving security was to encrypt multiple letters
The Playfair Cipher is an example
invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

PLAYFAIR KEY MATRIX

a 5×5 matrix of letters based on a keyword

- fill in letters of keyword (sans duplicates)
fill rest of matrix with other letters
- eg. using the keyword MONARCHY

M	O	N	A	R
C	H	Y	B	D
E	F	G	IJ	K
L	P	Q	S	T
U	V	W	X	Z

ENCRYPTING AND DECRYPTING

* plaintext is encrypted two letters at a time

1. if a pair is a repeated letter, insert filler like ' X '
2. if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
3. if both letters fall in the same column, replace each with the letter below it (wrapping to top from bottom)
4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

SECURITY OF PLAYFAIR CIPHER

- Security much improved over monoalphabetic
- Since have $26 \times 26=676$ digrams
- Would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic) and correspondingly more ciphertext
- was widely used for many years
- eg. by US \& British military in WW1
it can be broken, given a few hundred letters since still has much of plaintext structure

POLYALPHABETIC CIPHERS

- Polyalphabetic substitution ciphers
- Improve security using multiple cipher alphabets
- Make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
Use a key to select which alphabet is used for each letter of the message
- Use each alphabet in turn

Repeat from start after end of key is reached

VIGENÈRE CIPHER

* simplest polyalphabetic substitution cipher
* effectively multiple caesar ciphers
* key is multiple letters long $K=k_{1} k_{2} \ldots k_{d}$
$\times \mathrm{i}^{\text {th }}$ letter specifies $\mathrm{i}^{\text {th }}$ alphabet to use
* use each alphabet in turn
* repeat from start after d letters in message decryption simply works in reverse

EXAMPLE OF VIGENÈRE CIPHER

- write the plaintext out
- write the keyword repeated above it
- use each key letter as a caesar cipher key
- encrypt the corresponding plaintext letter
* eg using keyword deceptive key: deceptivedeceptivedeceptive plaintext: wearediscoveredsaveyourself ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

SECURITY OF VIGENÈRE CIPHERS

Have multiple ciphertext letters for each plaintext letter
Hence letter frequencies are obscured, but not totally lost
Start with letter frequencies

- see if look monoalphabetic or not
if not, then need to determine number of alphabets, since then can attach each

AUTOKEY CIPHER

Ideally want a key as long as the message

- Vigenère proposed the autokey cipher

With keyword is prefixed to message as key
knowing keyword can recover the first few letters

- use these in turn on the rest of the message
but still have frequency characteristics to attack
- eg. given key deceptive
key: deceptivewearediscoveredsav
plaintext: wearediscoveredsaveyourself ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA

ONE-TIME PAD

\square If a truly random key as long as the message is used, the cipher will be secure

- Unbreakable since ciphertext bears no statistical relationship to the plaintext
\square Since for any plaintext \& any ciphertext there exists a key mapping one to other
- Can only use the key once though

Problems in generation \& safe distribution of key

TRANSPOSITION CIPHERS

Consider classical transposition or permutation ciphers

These hide the message by rearranging the letter order without altering the actual letters used

Can recognise these since have the same frequency distribution as the original text

RAIL FENCE CIPHER

- Write message letters out diagonally over a number of rows, then read off cipher row by row
- e.g. Write message out as:

```
m emat r h t g p r y
    etefet e o a a t
```

- Giving ciphertext

MEMATRHTGPRYETEFETEOAAT

ROW TRANSPOSITION CIPHERS

write letters of message out in rows over a specified number of columns

- then reorder the columns according to some key before reading off the rows

PRODUCT CIPHERS

* Ciphers using substitutions or transpositions are not secure because of language characteristics
* Hence consider using several ciphers in succession to make harder, but:
+ two substitutions make a more complex substitution
+ two transpositions make more complex transposition
+ but a substitution followed by a transposition makes a new much harder cipher
\times this is bridge from classical to modern ciphers

ROTOR MACHINES

* Before modern ciphers, rotor machines were most common complex ciphers in use
\times Widely used in WW2
+ German Enigma, Allied Hagelin, Japanese Purple
* Implement a very complex, varying substitution cipher
* Use a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
* with 3 cylinders have $26^{3}=17576$ alphabets

HAGELIN ROTOR MACHINE

ROTOR MACHINE PRINCIPLES

SUMMARY

Classical cipher techniques and terminology
Monoalphabetic substitution ciphers

- Cryptanalysis using letter frequencies
- Playfair cipher

Polyalphabetic ciphers

- Transposition ciphers
\square Product ciphers and rotor machines

