324 Stat
 Lecture Notes

(2) Random Variable and probability Distribution

(Chapter 3 of the book pg 81-94)

2.1 Definition: A Random Variable:

A random variable is a function that associates a real number with each element in the sample space.

EX (3.1 pg 82):

Two balls are drawn in succession without replacement from an urn containing 4 red balls and 3 black balls.

The possible outcomes and the values \mathbf{y} of the random variable \mathbf{Y} where is the number of red balls, are

$|$| Sample space | y |
| :---: | :---: |
| RR | 2 |
| RB | 1 |
| BR | 1 |
| BB | 0 |

Y = number of red balls

Possible values of the random variable is $y=0,1,2$

Definition: Discrete Sample Space:

If a sample space contains a finite number \mathbf{n} of different values
$x_{1}, x_{2}, \ldots, x_{n}$ or countably infinite number of different values $x_{1,}, x_{2}, \ldots$ it is called a discrete sample space.

Examples of discrete random variables are;
*The number of bacteria per unit area in the study of drug control on bacterial growth.

* The number of defective television sets in a shipment of $\mathbf{1 0 0}$.

Definition: Continuous Sample Space:

If \mathbf{X} can take an infinite number of possibilities equal to the number of points on a line segment, then \mathbf{X} has a continuous sample space. Examples of the continuous random variable; heights, weights, temperature, distances or life periods

`Discrete Probability Distributions:

Definition:

The set of ordered pairs $(\mathbf{x}, \mathbf{f}(\mathbf{x}))$ is a probability function, probability mass function or probability distribution of the discrete random variable \mathbf{X} if for each possible outcome \mathbf{x},

$$
\begin{gathered}
\text { 1. } f(x) \geq 0 \\
\text { 2. } \sum_{\forall x} f(x)=1 \\
\text { 3. } P(X=x)=f(x)
\end{gathered}
$$

EX (2):

A shipment of $\mathbf{8}$ similar microcomputers to a retail outlet contains $\mathbf{3}$ that are defective. If a school makes a random
purchase of $\mathbf{2}$ of these computers, let $\mathbf{X}=\#$ of defective in the sample. find:

$$
\text { 1. the different values of r.v. } \mathrm{X}
$$

2. the probability distribution of $\mathrm{x} ; \mathrm{f}(\mathrm{x})$

$$
\text { 3. } P(1 \leq x \leq 2), P(x \leq 1), P(0<x \leq 2), f(2), f(5)
$$

Solution:

(1)The possible values of X is: $\mathbf{X}=0,1,2$
(2) $f(0)=P(X=0)=\frac{\binom{3}{0}\binom{5}{2}}{\binom{8}{2}}=\frac{10}{28} \quad f(1)=P(X=1)=\frac{\binom{3}{1}\binom{5}{1}}{\binom{8}{2}}=\frac{15}{28}$

$$
f(2)=P(X=2)=\frac{\binom{3}{2}\binom{5}{0}}{\binom{8}{2}}=\frac{3}{28}
$$

X	0	1	2
$\mathrm{f}(\mathrm{x})$	$10 / 28$	$15 / 28$	$3 / 28$

$$
\begin{gathered}
\text { (3) } \begin{array}{c}
P(1 \leq x \leq 2)=P(x=1)+P(x=2) \\
=15 / 28+3 / 28=18 / 28 \\
P(x \leq 1)=P(x=0)+P(x=1) \\
=10 / 28+15 / 28=25 / 28 \\
P(0<x \leq 2)=P(x=1)+P(x=2)=18 / 28 \\
f(2)=P(x=2)=15 / 28 \\
f(5)=P(x=5)=0
\end{array}
\end{gathered}
$$

See Ex 3.8 pg 84

2.5 Definition: The Cumulative distribution Function:

The cumulative distribution function, denoted by $\mathbf{F}(\mathbf{x})$ of a discrete random variable \mathbf{X} with probability distribution $\mathbf{f}(\mathbf{x})$ is
given by:

$$
\begin{equation*}
F(x)=P(X \leq x)=\sum_{X<x} f(x) \quad \text { for }-\infty<x<\infty \tag{1}
\end{equation*}
$$

*For example $F(2)=P(x \leq 2)$

$$
\begin{equation*}
P(a \leq X \leq b)=F(b)-F(a-1) \tag{2}
\end{equation*}
$$

* For example $F(3 \leq x \leq 7)=F(7)-F(2)$

EX (3):

For the given data find :(a) $\mathrm{F}(1) \quad$ (b) $P(1 \leq x \leq 2)$

X	0	1	2
$\mathrm{f}(\mathrm{x})$	$10 / 28$	$15 / 28$	$3 / 28$

Solution:

X	0	1	2
$\mathrm{f}(\mathrm{x})$	$10 / 28$	$15 / 28$	$3 / 28$
$\mathrm{~F}(\mathrm{x})$	$10 / 28$	$25 / 28$	$28 / 28$

See Ex 3.10

$$
\text { a. } F(1)=25 / 28
$$

$$
\text { b. } P(1 \leq X \leq 2)=F(2)-F(0)=28 / 28-10 / 28=18 / 28
$$

2.6 Continuous Probability Distributions:

The function $\mathbf{f}(\mathbf{x})$ is a probability density function for the continuous random variable \mathbf{X} defined over the set of real numbers \mathbf{R}, if:

$$
\text { 1. } f(x) \geq 0 \quad \text { for all } x \in R
$$

$$
\begin{gathered}
\text { 2. } \int_{-\infty}^{\infty} f(x) d x=1 \\
\text { 3. } P(a<X<b)=\int_{a}^{b} f(x) d x
\end{gathered}
$$

EX (3.11) pg 89:

Suppose that the error in the reaction temperature in ${ }^{\circ} \mathrm{C}$ for a controlled laboratory experiment is a continuous random

variable \mathbf{X} having the probability density function:

$$
\begin{array}{rlrl}
f(x) & =\frac{x^{2}}{3}, & -1<x<2 \\
& =0 & & \text { otherwise }
\end{array}
$$

a. Show that ${ }_{-\infty} \int^{\infty} f(x) d x=1 \quad$ b. Find $P(0<X \leq 1)$
c. find $P(0<x<3), P(x=2), F(x), F(0.5)$

Solution:

a. $\int_{-1}^{2} \frac{x^{2}}{3} \quad d x=\frac{x^{3}}{9}-\left.\right|^{2}=\frac{1}{9}\left[8-(-1)^{3}\right]=\frac{8+1}{9}=1$

$$
\begin{aligned}
& \text { b. } P(0<X \leq 1)=\int_{0}^{1} \frac{x^{2}}{3} d x=\left.\frac{x^{3}}{9}\right|_{0} ^{1}=\frac{1}{9} \\
& \text { c. } P(0<x<3)=\int_{0}^{2} \frac{x^{2}}{3} d x=\left.\frac{x^{3}}{9}\right|_{0} ^{2}=\frac{(2)^{3}}{9}=8 / 9 \\
& \qquad P(x=2)=0 \\
& F(x)=\int_{-1}^{x} \frac{x^{2}}{3} d x=\left.\frac{x^{3}}{9}\right|_{-1} ^{x}=\frac{x^{3}-(-1)^{3}}{9}=\frac{x^{3}+1}{9} \\
& F(0.5)=\frac{(0.5)^{3}+1}{9}=0.139
\end{aligned}
$$

2.7 Definition:

The cumulative distribution $\mathrm{F}(\mathbf{x})$ of a continuous random

 variable \mathbf{X} with density function $f(x)$ is given by:$$
\begin{aligned}
& P(x)=P(X \leq x)=\int_{-\infty}^{X} x d x \text { for }-\infty<x<\infty \\
& P(a \leq X \leq b)=P(a<X<b)=F(b)-F(a)
\end{aligned}
$$

Ex 3.12 pg 90

For example (4): find $P(0<x<1)$
$\because F(x)=\frac{x^{3}+1}{9}$
$\therefore P(0<x<1)=F(1)-F(0)=\frac{1+1}{9}-\frac{0+1}{9}=\frac{2}{9}-\frac{1}{9}=\frac{1}{9}$
Therefore

$$
F(x)=\left\{\begin{array}{lc}
0 & x<-1 \\
\frac{x^{3}+1}{9} & -1 \leq x<2 \\
1 & x \geq 2
\end{array}\right\} \quad \begin{gathered}
\\
\text { See Ex 3.13 Pg } \\
90 \\
\hline
\end{gathered}
$$

