Chapter 2:

Page 91

3.2 An overseas shipment of 5 foreign automobiles contains 2 that have slight paint blemishes. If an agency receives 3 of these automobiles at random, list the elements of the sample space S, using the letters B and N for blemished and nonblemished, respectively; then to each sample point assign a value x of the random variable X representing the number of automobiles with paint blemishes purchased by the agency.

Solution:

Sample Space	X
NNN	0
NNB	1
NBN	1
BNN	1
BBN	2
BNB	2
NBB	2

3.5 Determine the value c so that each of the following functions can serve as a probability distribution of the discrete random variable X:
(a) $f(x)=c\left(x^{2}+4\right)$, for $x=0,1,2,3$.
(b) $f(x)=c\binom{2}{x}\binom{3}{3-x}$, for $x=0,1,2$.

Solution:

(a) $\sum_{x=0}^{3} f(x)=1$, then
$c\left(0^{2}+4\right)+c\left(1^{2}+4\right)+c\left(2^{2}+4\right)+c\left(3^{2}+4\right)=1$
$4 c+5 c+8 c+13 c=30 c \Rightarrow c=\frac{1}{30}$
(b) $\sum_{x=0}^{2} f(x)=1$, then
$c\binom{2}{0}\binom{3}{3-0}+c\binom{2}{1}\binom{3}{3-1}+c\binom{2}{2}\binom{3}{3-2}=1$
$c+6 c+3 c=10 c \Rightarrow c=\frac{1}{10}$
3.6 The shelf life, in days, for bottles of a certain prescribed medicine is a random variable having the density function

$$
f(x)=\left\{\begin{array}{l}
\frac{20,000}{(x+100)^{3}}, \quad x>0 \\
0, \quad \text { elsewhere } .
\end{array}\right.
$$

Find the probability that a bottle of this medicine will have a shell life of (a) at least 200 days;
(b) anywhere from 80 to 120 days.

Solution:

$$
\begin{aligned}
P(X>200) & =1-P(X<200)=1-\int_{0}^{200} \frac{20,000}{(x+100)^{3}} d x \\
& =1-20,000 \int_{0}^{200}(x+100)^{-3} d x \\
& =1-20,\left.000 \frac{(x+100)^{-2}}{-2}\right|_{0} ^{200}=1+10,000\left(\frac{1}{300^{2}}-\frac{1}{100^{2}}\right) \\
& =\frac{1}{9}
\end{aligned}
$$

$$
P(80<X<120)=\int_{80}^{120} \frac{20,000}{(x+100)^{3}} d x=20,\left.000 \frac{(x+100)^{-2}}{-2}\right|_{80} ^{120}
$$

$$
=-10,000\left(\frac{1}{220^{2}}-\frac{1}{180^{2}}\right)=0.10203
$$

3.14 The waiting time, in hours, between successive speeders spotted by a radar unit is a continuous random variable with cumulative distribution function

$$
F(x)= \begin{cases}0, & x<0, \\ 1-e^{-8 x}, & x \geq 0 .\end{cases}
$$

Find the probability of waiting less than 12 minutes between successive speeders
(a) using the cumulative distribution function of X ;
(b) using the probability density function of X .

Solution:
(a) $P(X<0.2)=F(0.2)=0.7981$
(b) $f(x)=\frac{d}{d x} F(x)=8 e^{-8 x}, x \geq 0$
$P(X<0.2)=\int_{0}^{0.2} 8 e^{-8 x} d x=-\left.e^{-8 x}\right|_{0} ^{0.2}=0.7981$
3.21 Consider the density function

$$
f(x)= \begin{cases}k \sqrt{x}, & 0<x<1 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Evaluate k.
(b) Find $\mathrm{F}(\mathrm{x})$ and use it to evaluate $\mathrm{P}(0.3<\mathrm{X}<0.6)$.

Solution:

(a) $\int_{0}^{1} k \sqrt{x} d x=\left.k \frac{x^{3 / 2}}{3 / 2}\right|_{0} ^{1}=\frac{2}{3} k$, then $k=\frac{3}{2}$.
(b) $F(x)=\left\{\begin{array}{cc}\int_{0}^{x} \frac{3}{2} \sqrt{x} d x=x^{3 / 2}, & 0<x<1 \\ 0, & \text { elsewhere } .\end{array}\right.$
$F(x)= \begin{cases}x^{3 / 2}, & 0<x<1 \\ 0, & \text { elsewhere } .\end{cases}$
$P(0.3<X<0.6)=F(0.6)-F(0.3)=0.6^{\frac{3}{2}}-0.3^{\frac{3}{2}}=0.300$
H.W: 3.9-3.12-3.26

Chapter 3:

4.12 If a dealer's profit, in units of $\$ 5000$, on a new automobile can be looked upon as a random variable X having the density function

$$
f(x)= \begin{cases}2(1-x), & 0<x<1, \\ 0, & \text { elsewhere } .\end{cases}
$$

find the average profit per automobile.

Solution:

$$
E(X)=\int_{0}^{1} 2 x(1-x) d x=\left.2\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{1}=\frac{1}{3}
$$

4.17 Let X be a random variable with the following probability distribution:

x	-3	6	9
$\mathrm{f}(\mathrm{x})$	$1 / 6$	$1 / 2$	$1 / 3$

Find $\mu_{g(X)}$, where $g(X)=(2 X+1)^{2}$.

Solution:

$\mu_{g(X)}=E[g(X)]=E\left[(2 X+1)^{2}\right]=E\left(4 X^{2}+4 X+1\right)$

$$
=4 E\left(X^{2}\right)+4 E(X)+1
$$

x	-3	6	9	\sum
$f(x)$	$1 / 6$	$1 / 2$	$1 / 3$	1
$x f(x)$	$-1 / 2$	3	3	$11 / 2$
$x^{2} f(x)$	$3 / 2$	18	27	$93 / 2$

$\mu_{g(X)}=4 \frac{93}{2}+4 \frac{11}{2}+1=209$
4.32 In Exercise 3.13 on page 92, the distribution of the number of imperfections per 10 meters of synthetic fabric is given by

x	0	1	2	3	4
$\mathrm{f}(\mathrm{x})$	0.41	0.37	0.16	0.05	0.01

(b) Find the expected number of imperfections, $\mathrm{E}(\mathrm{X})=\mu$.
(c) Find $E\left(X^{2}\right)$.

Solution:

x	0	1	2	3	4	\sum
$f(x)$	0.41	0.37	0.16	0.05	0.01	1
$x f(x)$	0	0.37	0.32	0.15	0.04	0.88
$x^{2} f(x)$	0	0.37	0.64	0.45	0.16	1.62

$$
E(X)=0.88, \quad E\left(X^{2}\right)=1.62
$$

4.43 The length of time, in minutes, for an airplane to obtain clearance for takeoff at a certain airport is a random variable $\mathrm{Y}=3 \mathrm{X}-2$, where X has the density function

$$
f(x)= \begin{cases}\frac{1}{4} e^{-x / 4}, & x>0 \\ 0, & \text { elsewhere }\end{cases}
$$

Find the mean and variance of random variable Y.
$E(Y)=E(3 X-2)=3 E(X)-2$
$V(Y)=V(3 X-2)=9 V(X)$
$E(X)=\int_{0}^{\infty} \frac{x}{4} e^{-x / 4} d x=4$
let $u=x, d v=e^{-x / 4}$, then $v=-4 e^{-\frac{x}{4}}$, and $d u=1$
$u v-\int v d u=x e^{-\frac{x}{4}}-\int-4 e^{-\frac{x}{4}} d x=x e^{-\frac{x}{4}}-16 e^{-\frac{x}{4}}$
$\int_{0}^{\infty} \frac{x}{4} e^{-x / 4} d x=\left.\frac{1}{4}\left(x e^{-\frac{x}{4}}-16 e^{-\frac{x}{4}}\right)\right|_{0} ^{\infty}=\frac{1}{4}(0-0-0+16)=4$
$E\left(X^{2}\right)=\int_{0}^{\infty} \frac{x^{2}}{4} e^{-x / 4} d x=32$
let $u=x^{2}, d v=e^{-x / 4}$, then $v=-4 e^{-\frac{x}{4}}$, and $d u=2 x$

$$
\begin{aligned}
u v-\int v d u & =x^{2} e^{-\frac{x}{4}}-2 \int-4 x e^{-\frac{x}{4}} d x=x^{2} e^{-\frac{x}{4}}+8 \int x e^{-\frac{x}{4}} d x \\
& =x^{2} e^{-\frac{x}{4}}+8\left(x e^{-\frac{x}{4}}-16 e^{-\frac{x}{4}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{x^{2}}{4} e^{-x / 4} d x=\left.\frac{1}{4}\left(x^{2} e^{-\frac{x}{4}}+8\left(x e^{-\frac{x}{4}}-16 e^{-\frac{x}{4}}\right)\right)\right|_{0} ^{\infty}=\frac{1}{4}(16 * 8)=32 \\
& V(X)=E\left(X^{2}\right)-[E(X)]^{2}=32-16=16 \\
& E(Y)=3 E(X)-2=3 * 4-2=10 \\
& V(Y)=9 V(X)=9 * 16=144
\end{aligned}
$$

4.49 Consider the situation in Exercise 4.32 on page 119. The distribution of the number of imperfections per 10 meters of synthetic failure is given by

x	0	1	2	3	4
$\mathrm{f}(\mathrm{x})$	0.41	0.37	0.16	0.05	0.01

Find the variance and standard deviation of the number of imperfections.

Solution:

x	0	1	2	3	4	\sum
$f(x)$	0.41	0.37	0.16	0.05	0.01	1
$x f(x)$	0	0.37	0.32	0.15	0.04	0.88
$x^{2} f(x)$	0	0.37	0.64	0.45	0.16	1.62
$E(X)=0.88, E\left(X^{2}\right)=1.62$						
$V(X)=E\left(X^{2}\right)-[E(X)]^{2}=0.8456$						
$\sigma=\sqrt{V(X)}=0.919565$						

H.W: 4.22-4.28-4.40-4.50

(من ملزمة التمارين)

4.1. DISCRETE DISTRIBUTIONS

Q7 \& Q12

4.2. CONTINUOUS DISTRIBUTIONS

Q1

4.3. CHEBYSHEV’S THEOREM : من ملزمة التمـارين)

Q1 \& Q3 \& Q4 \& Q5
H.W: Q2

