Engineering Probability \& Statistics (AGE 1150)
 Chapter 2: Probability - Part 3

Dr. Feras Fraige

Total Probability

- Definition:

The events A_{1}, A_{2}, \ldots, and A_{n} constitute a partition of the sample space S if:

- $\bigcup_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{A}_{\mathrm{i}}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}=S$
- $A_{\mathrm{i}} \cap A_{\mathrm{j}}=\phi, \quad \forall \mathrm{i} \neq \mathrm{j}$
- Theorem (Total Probability):
- If the events A_{1}, A_{2}, \ldots, and A_{n} constitute a partition of the sample space S such that $\mathrm{P}\left(A_{k}\right) \neq 0$ for $k=1,2, \ldots, n$, then for any event B :

$$
\begin{aligned}
\mathrm{P}(B) & =\sum_{k=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{~A}_{\mathrm{k}} \cap \mathrm{~B}\right) \\
& =\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{~A}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{\mathrm{k}}\right)
\end{aligned}
$$

Tree Diagram

Example

- Three machines A_{1}, A_{2}, and A_{3} make $20 \%, 30 \%$, and 50%, respectively, of the products. It is known that $1 \%, 4 \%$, and 7% of the products made by each machine, respectively, are defective. If a finished product is randomly selected, what is the probability that it is defective?
- Define the following events:
- $B=\{$ the selected product is defective $\}$
- $A_{1}=\left\{\right.$ the selected product is made by machine $\left.A_{1}\right\}$
- $A_{2}=\left\{\right.$ the selected product is made by machine $\left.A_{2}\right\}$
- $A_{3}=\left\{\right.$ the selected product is made by machine $\left.A_{3}\right\}$

$$
\begin{array}{ll}
\mathrm{P}\left(A_{1}\right)=\frac{20}{100}=0.2 ; & \mathrm{P}\left(B \mid A_{1}\right)=\frac{1}{100}=0.01 \\
\mathrm{P}\left(A_{2}\right)=\frac{30}{100}=0.3 ; & \mathrm{P}\left(B \mid A_{2}\right)=\frac{4}{100}=0.04 \\
\mathrm{P}\left(A_{3}\right)=\frac{50}{100}=0.5 ; & \mathrm{P}\left(B \mid A_{3}\right)=\frac{7}{100}=0.07
\end{array}
$$

$$
\begin{aligned}
& \quad \sum_{\mathrm{P}(\mathrm{~B})}= \\
= & \mathrm{P}\left(\mathrm{~A}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{\mathrm{k}}\right) \\
= & \mathrm{P}\left(A_{1}\right) \mathrm{P}\left(B \mid A_{1}\right)+\mathrm{P}\left(A_{2}\right) \mathrm{P}\left(B \mid A_{2}\right)+\mathrm{P}\left(A_{3}\right) \mathrm{P}\left(B \mid A_{3}\right) \\
= & 0.2 \times 0.01+0.3 \times 0.04+0.5 \times 0.07 \\
= & 0.002+0.012+0.035 \\
= & 0.049
\end{aligned}
$$

$$
P(B)=0.049
$$

- Question:

If it is known that the selected product is defective, what is the probability that it is made by machine A^{1} ?

- Answer:

$$
\mathrm{P}\left(A_{1} \mid B\right)=\frac{\mathrm{P}\left(\mathrm{~A}_{1} \cap \mathrm{~B}\right)}{\mathrm{P}(\mathrm{~B})}=\frac{\mathrm{P}\left(\mathrm{~A}_{1}\right) \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{1}\right)}{\mathrm{P}(\mathrm{~B})}=\frac{0.2 \times 0.01}{0.049}=\frac{0.002}{0.049}=0.0408
$$

- This rule is called Bayes' rule.

Theorem (Bayes' rule)

- If the events A_{1}, A_{2}, \ldots, , and A_{n} constitute a partition of the sample space S such that $\mathrm{P}\left(A_{\mathrm{k}}\right) \neq 0$ for $k=1,2, \ldots, n$, then for any event B such that $\mathrm{P}(B) \neq 0$:

$$
\mathrm{P}\left(A_{\mathrm{i}} \mid B\right)=\frac{\mathrm{P}\left(\mathrm{~A}_{\mathrm{i}} \cap \mathrm{~B}\right)}{\mathrm{P}(\mathrm{~B})}=\frac{\mathrm{P}\left(\mathrm{~A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{\mathrm{i}}\right)}{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{~A}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{\mathrm{k}}\right)}=\frac{\mathrm{P}\left(\mathrm{~A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{\mathrm{i}}\right)}{\mathrm{P}(\mathrm{~B})}
$$

$$
\text { for } \mathrm{i}=1,2, \ldots, n \text {. }
$$

From Previous Example,

If it is known that the selected product is defective, what is the probability that it is made by:

- (a) machine A_{2} ?
- (b) machine A_{3} ?
(a) $\mathrm{P}\left(A_{2} \mid B\right)=\frac{\mathrm{P}\left(\mathrm{A}_{2}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{2}\right)}{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{A}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{\mathrm{k}}\right)}=\frac{\mathrm{P}\left(\mathrm{A}_{2}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{2}\right)}{\mathrm{P}(\mathrm{B})}$

$$
=\frac{0.3 \times 0.04}{0.049}=\frac{0.012}{0.049}=0.2449
$$

$$
P(B)=0.049
$$

$$
P\left(\mathrm{~A}_{2} \mid \mathrm{B}\right)=\frac{0.012}{0.049}=\mathbf{0 . 2 4 4 9}
$$

(b) $\mathrm{P}\left(A_{3} \mid B\right)=\frac{\mathrm{P}\left(\mathrm{A}_{3}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{3}\right)}{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{A}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{\mathrm{k}}\right)}=\frac{\mathrm{P}\left(\mathrm{A}_{3}\right) \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}_{3}\right)}{\mathrm{P}(\mathrm{B})}$

$$
=\frac{0.5 \times 0.07}{0.049}=\frac{0.035}{0.049}=0.7142
$$

Note:

$$
\mathrm{P}\left(A_{1} \mid B\right)=0.0408, \mathrm{P}\left(A_{2} \mid B\right)=0.2449, \mathrm{P}\left(A_{3} \mid B\right)=0.7142
$$

- $\sum_{k=1}^{3} \mathrm{P}\left(\mathrm{A}_{\mathrm{k}} \mid \mathrm{B}\right)=1$
- If the selected product was found defective, we should check machine A_{3} first, if it is ok, we should check machine A_{2}, if it is ok, we should check machine A_{1}.

