Chapter 3: Multiple Random Variables

CLO3	Define multiple random variables in terms of their PDF and CDF and calculate joint moments such as the correlation and covariance.

Objectives

1. Introduce Joint distribution, joint density, conditional distribution and density, Statistical independence
2. Introduce Expectations, correlations and joint characteristic functions

1. Vector Random Variables

- Let two random variables X with value x and Y with value y are defined on a sample space S, then the random point (x, y) is a random vector in the $X Y$ plane.
- In the general case where N r.v's. $X_{1}, X_{2}, \ldots X_{N}$ are defined on a sample space S, they become N -dimensional random vector or N -dimensional r.v.

2. Joint distribution

- Let two events $A=\{X \leq x\}$ and $B=\{Y \leq y\}$, (X and Y two random variables $)$ with probability distribution functions $F_{X}(x)$ and $F_{Y}(y)$, respectively:

$$
\begin{align*}
& F_{X}(x)=P(X \leq x) \tag{1}\\
& F_{Y}(y)=P(Y \leq y) \tag{2}
\end{align*}
$$

- The probability of the joint event $\{X \leq x, Y \leq y\}$, which is a function of the members x and y is called the joint probability distribution function $P\{X \leq x, Y \leq y\}=P(A \cap B)$. It is given as follows:

$$
\begin{equation*}
F_{X, Y}(x, y)=P(X \leq x, Y \leq y) \tag{3}
\end{equation*}
$$

- If X and Y are two discrete random variables, where X have N possible values x_{n} and Y have M possible values y_{m}, then:

- If X and Y are two continues random variables, then:

$$
\begin{equation*}
F_{X, Y}(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f_{X, Y}(u, v) d u d v \tag{5}
\end{equation*}
$$

Example 1:

Let X and Y be two discrete random variables. Let us assume that the joint space has only three possible elements $(1,1),(2,1)$ and $(3,3)$. The probabilities of these events are:
$P(1,1)=0.2, P(2,1)=0.3$, and $P(3,3)=0.5$.
Find and plot $F_{X, Y}(x, y)$.

Solution:

Proprieties of the joint distribution $F_{X, Y}(x, y)$:

1. $\quad \boldsymbol{F}_{X, Y}(-\infty,-\infty)=\boldsymbol{F}_{X, Y}(-\infty, \boldsymbol{y})=\boldsymbol{F}_{X, Y}(\boldsymbol{x},-\infty)=\mathbf{0}$
2. $\quad \boldsymbol{F}_{X, Y}(\infty, \infty)=1$
3. $\mathbf{0} \leq \boldsymbol{F}_{X, Y}(\boldsymbol{x}, \boldsymbol{y}) \leq \mathbf{1}$
4. $P\left\{x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right\}=F_{X, Y}\left(x_{2}, y_{2}\right)-F_{X, Y}\left(x_{1}, y_{2}\right)-F_{X, Y}\left(x_{2}, y_{1}\right)+$ $F_{X, Y}\left(x_{1}, y_{1}\right)$
5. $\quad \boldsymbol{F}_{\boldsymbol{X}, \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})$ is a non decreasing function of both \boldsymbol{x} and \boldsymbol{y}

Marginal distributions:

- The marginal distribution functions of one random variable is expressed as:

$$
\begin{array}{ll}
\checkmark & F_{X, Y}(x, \infty)=F_{X}(x) \\
\checkmark & F_{X, Y}(\infty, y)=F_{Y}(y)
\end{array}
$$

Example 2:

$\boldsymbol{S}=\{(1,1),(2,1),(3,3)\}$
$P(1,1)=0.2, \quad P(2,1)=0.3, \quad P(3,3)=0.5$
Find $F_{X, Y}(x, y)$ and the marginal distributions $F_{\mathrm{X}}(x)$ and $F_{\mathrm{Y}}(y)$ of example 1

Solution:

$$
\begin{aligned}
& \overline{\mathrm{F}_{\mathrm{X}, \mathrm{Y}}(x, y)}=P(1,1) u(x-1) u(y-1)+P(2,1) u(x-2) u(y-1)+ \\
& P(3,3) u(x-3) u(y-3) \\
& \quad=0.2 u(x-1) u(y-1)+0.3 u(x-2) u(y-1)+0.5 u(x-3) u(y-3)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{X}(\mathrm{x})=\mathrm{F}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}, \infty)=0.2 u(x-1)+0.3 u(x-2)+0.5 u(x-3) \\
& \mathrm{F}_{\mathrm{Y}}(\mathrm{y})=\mathrm{F}_{\mathrm{X}, \mathrm{Y}}(\infty, \mathrm{y})=0.2 u(y-1)+0.3 u(y-1)+0.5 u(y-3) \\
& =0.5 u(y-1)+0.5 u(y-3)
\end{aligned}
$$

3. Joint density

- For two continuous random variables X and Y, the joint probability density function is given by:

$$
\begin{equation*}
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y} \tag{6}
\end{equation*}
$$

- If X and Y, are tow discrete random variables then the joint probability density function is given by:

$$
\begin{equation*}
f_{X, Y}(x, y)=\sum_{n=1}^{N} \sum_{m=1}^{M} P\left(x_{n}, y_{m}\right) \delta\left(x-x_{n}\right) \delta\left(y-y_{m}\right) \tag{7}
\end{equation*}
$$

Proprieties of the joint density function $f_{X, Y}(x, y)$:

1. $f_{X, Y}(x, y) \geq 0$
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
3. $F_{X, Y}(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f_{X, Y}(x, y) d x d y$
4. $F_{X}(x)=\int_{-\infty}^{x} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d y d x, F_{Y}(y)=\int_{-\infty}^{y} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y$
5. $P\left\{x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right\}=\int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} f_{X, Y}(x, y) d x d y$
6. $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y, f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x \quad$ (Marginal density
function)

Example 3:

Let us consider the following joint probability density function of two random variables X and Y :
$f_{X, Y}(x, y)=u(x) u(y) x e^{-x(y+1)}$
Find the marginal probability density functions $f_{X}(x)$ and $f_{Y}(y)$

Solution:

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{\infty} u(x) x e^{-x(y+1)} d y=\left.u(x) x e^{-x} \frac{e^{-x y}}{-x}\right|_{0} ^{\infty}=u(x) e^{-x} \\
f_{Y}(y) & =\int_{0}^{\infty} u(y) x e^{-x(y+1)} d x
\end{aligned}
$$

But $\int x e^{a x} d x=e^{a x}\left[\frac{x}{a}-\frac{1}{a^{2}}\right]$
$f_{Y}(y)=u(y)\left[e^{-x(y+1)}\left(\frac{-x}{(y+1)}-\frac{1}{(y+1)^{2}}\right]_{0}^{\infty}=\frac{u(y)}{(y+1)^{2}}\right.$

4. Conditional distribution and density

- The conditional distribution function of a random variable X, given event B with $P(B) \neq$ 0 is:

$$
\begin{equation*}
F_{X}(x \mid B)=P\{X \leq x \mid B\}=\frac{P\{X \leq x \cap B\}}{P(B)} \tag{8}
\end{equation*}
$$

- The corresponding conditional density function is:

$$
\begin{equation*}
f_{X}(x \mid B)=\frac{d F_{X}(x \mid B)}{d x} \tag{9}
\end{equation*}
$$

- Often, we are interested in computing the distribution function of one random variable X conditioned by the fact that the second variable has some specific values.
4.1 Point conditioning: The Radom variable has some specific value
- For continuous random variables:

$$
\begin{equation*}
f_{X}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y,}(y)} \tag{10}
\end{equation*}
$$

Also, we have:

$$
\begin{equation*}
f_{Y}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X,}(x)} \tag{11}
\end{equation*}
$$

- For discrete random variables:

Suppose we have:

$$
\begin{gather*}
f_{Y}(\mathrm{y})=\sum_{j=1}^{M} P\left(y_{j}\right) \delta\left(y-y_{j}\right) \tag{12}\\
f_{X, Y}(x, y)=\sum_{i=1}^{N} \sum_{j=1}^{M} P\left(x_{i}, y_{j}\right) \delta\left(x-x_{i}\right) \delta\left(y-y_{j}\right) \tag{13}
\end{gather*}
$$

Assume $y=y_{k}$ is the specific value of y , then:

$$
\begin{equation*}
F_{X}\left(x \mid Y=y_{k}\right)=\sum_{i=1}^{N} \frac{P\left(x_{i}, y_{k}\right)}{P\left(y_{k}\right)} u\left(x-x_{i}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{X}\left(x \mid Y=y_{k}\right)=\sum_{i=1}^{N} \frac{P\left(x_{i}, y_{k}\right)}{P\left(y_{k}\right)} \delta\left(x-x_{i}\right) \tag{15}
\end{equation*}
$$

Example 4:

Let us consider the joint pdf: $f_{X, Y}(x, y)=u(x) u(y) x e^{-x(y+1)}$
Find $f_{Y}(y \mid x)$ if the marginal pdf of X is given by: $f_{X}(x)=u(x) e^{-x}$

Solution:

$f_{X, Y}(x, y)$ and $f_{X}(x)$ are nonzero only for $y>0$ and $x>0, f_{Y}(y \mid x)$ is nonzero only for $y>$ 0 and $x>0$, therefore, we keep $\mathrm{u}(\mathrm{x})$.
$f_{Y}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X,}(x)}=u(x) u(y) x e^{-x y}$

Example 5:

What represents the corresponding figure?
Find $f_{x}\left(x \mid y=y_{3}\right)$

Solution:

$$
\begin{aligned}
& f_{x}\left(x \mid Y=y_{3}\right)=\sum_{i=1}^{2} \frac{P\left(x_{i}, y_{3}\right)}{P\left(y_{3}\right)} \delta\left(x-x_{i}\right) \\
& P\left(y_{3}\right)=\frac{4}{15}+\frac{5}{15}=\frac{9}{15} \\
& f_{X}\left(x \mid Y=y_{3}\right)=\frac{P\left(x_{1}, y_{3}\right)}{9 / 15} \delta\left(x-x_{1}\right)+\frac{P\left(x_{2}, y_{3}\right)}{9 / 15} \delta\left(x-x_{2}\right) \\
& =\frac{4}{9} \delta\left(x-x_{1}\right)+\frac{5}{9} \delta\left(x-x_{2}\right)
\end{aligned}
$$

4.2 Interval conditioning: The Radom variable in the interval $\left\{y_{a}<Y \leq y_{b}\right\}$ y_{a} and y_{b} are real numbers.
$f_{x}\left(x \mid y_{a}<Y \leq y_{b}\right)=\frac{\int_{y_{a}}^{y_{b}} f_{X, Y}(x, y) d y}{\int_{y_{a}}^{y_{b}} f_{Y}(y) d y}=\frac{F_{X, Y}\left(x, y_{b}\right)-F_{X, Y}\left(x, y_{a}\right)}{\int_{y_{a}}^{y_{b}} f_{Y}(y) d y}$
and

$$
\begin{equation*}
F_{x}\left(x \mid y_{a}<Y \leq y_{b}\right)=\frac{\int_{y_{a}}^{y_{b}} \int_{-\infty}^{x} f_{X, Y}(u, v) d u d v}{\int_{y_{a}}^{y_{b}} \int_{-\infty}^{\infty} f_{X, Y}(u, v) d u d v} \tag{17}
\end{equation*}
$$

Example 6:

Let $f_{X, Y}(x, y)=u(x) u(y) x e^{-x(y+1)}$
$f_{X}(x)=u(x) e^{-x}$, and $\quad f_{Y}(y)=\frac{u(y)}{(y+1)^{2}}$
Find $\quad f_{X}(x \mid Y \leq y)$?

Solution 6:

$f_{x}(x \mid y \leq y)=f_{x}(x \mid-\infty<y \leq y)=\frac{\int_{-\infty}^{y} f_{X, Y}(x, y) d y}{\int_{-\infty}^{y} f_{Y}(y) d y}$

$$
\begin{aligned}
\int_{-\infty}^{y} f_{X, Y}(x, y) d y & =\int_{0}^{y} u(x) x e^{-x(y+1)} d y \\
& =\left.u(x) x e^{-x} \cdot \frac{e^{-x y}}{-x}\right|_{0} ^{y}=-u(x) e^{-x}\left[e^{-x y}-1\right] \\
& =u(x) e^{-x}\left[1-e^{-x y}\right] \quad y>0 \\
\int_{-\infty}^{y} f_{Y}(y) d y= & \int_{0}^{y} \frac{1}{(y+1)^{2}} d y=\left.\frac{-1}{y+1}\right|_{0} ^{y}=\frac{-1}{y+1}+1=\frac{y}{y+1} \quad y>0
\end{aligned}
$$

Then, $f_{X}(x \mid Y \leq y)=u(x) u(y) e^{-x}\left(1-e^{-x y}\right)\left(\frac{y+1}{y}\right)$

5. Statistical independence

- Two random variables X and Y are independent if:

$$
\begin{equation*}
F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y) \tag{19}
\end{equation*}
$$

This means that

$$
\begin{equation*}
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \tag{20}
\end{equation*}
$$

- Note that if X and Y are independent, then

$$
\begin{equation*}
f_{X}(x \mid y)=f_{X}(x) \text { and } f_{X}(y \mid x)=f_{y}(y) \tag{21}
\end{equation*}
$$

Example 7:

In example 6, are X and Y independent?

Solution

$$
\begin{aligned}
& f_{X, Y}(x, y)=u(x) u(y) x e^{-x(y+1)} \\
& f_{X}(x) f_{Y}(y)=u(x) u(y) e^{-x} \cdot \frac{1}{(y+1)^{2}} \neq f_{X, Y}(x, y)
\end{aligned}
$$

$\Rightarrow X$ and Y are not independent.

Example 8:

Let $f_{X, Y}(x, y)=\frac{1}{12} u(x) u(y) e^{-\frac{x}{4}-\frac{y}{3}}$ are X and Y independent?

Solution

$$
\begin{aligned}
& f_{X}(x)=\int_{0}^{\infty} \frac{1}{12} u(x) e^{-\frac{x}{4}-\frac{y}{3}} d y=\frac{u(x)}{12} e^{-\frac{x}{4}} \cdot-\left.3 e^{-\frac{y}{3}}\right|_{0} ^{\infty}=\frac{u(x)}{4} e^{\frac{-x}{4}} \\
& f_{Y}(y)=\int_{0}^{\infty} \frac{1}{12} u(y) e^{-\frac{x}{4}-\frac{y}{3}} d x=\frac{u(y)}{3} e^{\frac{-y}{3}}
\end{aligned}
$$

$$
f_{X}(x) f_{Y}(y)=\frac{1}{12} u(x) u(y) e^{-\frac{x}{4}-\frac{y}{3}}=f_{X, Y}(x, y) \Rightarrow X \& Y \text { are independent. }
$$

6. Sum of two random variables

- Here the problem is to determine the probability density function of the sum of two independent random variables X and Y :

$$
\begin{equation*}
W=X+Y \tag{22}
\end{equation*}
$$

- The resulting probability density function of W can be shown to be the convolution of the density functions of X and Y :

$$
\begin{array}{r}
\text { Convolution } \\
f_{W}(w)=f_{x}(x) * f_{Y}(y) \tag{23}\\
f_{W}(w)=\int_{-\infty}^{\infty} f_{Y}(y) f_{X}(w-y) d y=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(w-x) d x
\end{array}
$$

Proof:

- Let W equals the sum of two independent r.v.s X and Y

$$
\mathrm{W}=\mathrm{X}+\mathrm{Y}
$$

Then, $F_{W}(w)=P\{W \leq w\}=P\{X+Y \leq w\}$
$X+Y \leq w$ corresponds to the shaded area, therefore:

$$
F_{W}(w)=\int_{-\infty}^{\infty} \int_{-\infty}^{x=w-y} f_{X, Y}(x, y) d x d y
$$

Since X and Y are independent:

$$
\begin{aligned}
F_{W}(w) & =\int_{-\infty}^{\infty} \int_{-\infty}^{w-y} f_{Y}(y) f_{X}(x) d x d y \\
& =\int_{-\infty}^{\infty} f_{Y}(y) \int_{-\infty}^{w-y} f_{X}(x) d x d y \\
& =\int_{-\infty}^{\infty} f_{Y}(y) F_{X}(w-y) d y
\end{aligned}
$$

Differentiating w.r.t. w :

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{Y}(y) f_{X}(w-y) d y=f_{Y}(w) * f_{X}(w)
$$

So, the density function of the sum of two independent r.v.s is the convolution of their density functions.

Example 9:

Let us consider two independent random variables X and Y with the following pdfs:
$f_{X}(x)=\frac{1}{a}[u(x)-u(x-a)]$
$f_{Y}(y)=\frac{1}{b}[u(y)-u(y-b)]$ Where $0<a<b$
Find the pdf of $W=X+Y$

Solution:

7. Central Limit Theorem

The probability distribution function of the sum of a large number of random variables approaches a Gaussian distribution.

8. Expectations and Correlations

- If $\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y})$ is a function of two random variables X and Y (their joint probability density function $\boldsymbol{f}_{\boldsymbol{X}, \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})$). Then the expected value of $\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y})$, a function of the two random variables X and Y is given by:

$$
\begin{equation*}
E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y \tag{24}
\end{equation*}
$$

Example 10

Let $g(X, Y)=a X+b Y$, find $E[g(X, Y)]$?

Solution:

$$
\begin{aligned}
\bar{g} & =E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(a X+b Y) f_{X, Y}(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a x f_{X, Y}(x, y) d x d y+\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} b y f_{X, Y}(x, y) d x d y \\
& =a \int_{-\infty}^{\infty} x f_{X}(x) d x+b \int_{-\infty}^{\infty} y f_{Y}(y) d y \\
& =a E[X]+b E[Y]
\end{aligned}
$$

- If we have n functions of random variables $\boldsymbol{g}_{1}(\boldsymbol{x}, \boldsymbol{y}), \boldsymbol{g}_{2}(\boldsymbol{x}, \boldsymbol{y}), \ldots, \boldsymbol{g}_{n}(\boldsymbol{x}, \boldsymbol{y})$ then:

$$
E\left[g_{1}(x, y)+g_{2}(x, y)+\ldots+g_{n}(x, y)\right]=E\left[g_{1}(x, y)\right]+E\left[g_{2}(x, y)\right]+\cdots+E\left[g_{n}(x, y)\right]
$$

Which means that the expected value of the sum of the functions is equal to the sum of the expected values of the functions.

8.1 Joint Moments about the origin

$$
\begin{equation*}
m_{n k}=E\left[X^{n} Y^{k}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{n} y^{k} f_{X, Y}(x, y) d x d y \tag{25}
\end{equation*}
$$

We have the following proprieties:
$\checkmark m_{n 0}=E\left[X^{n}\right]$ are the moments of X
$\checkmark m_{0 k}=E\left[Y^{k}\right]$ are the moments of Y
\checkmark The sum $\boldsymbol{n}+\boldsymbol{k}$ is called the order of the moments. (m_{20}, m_{02} and m_{11} are called second order moments).
$\checkmark m_{10}=E[X]$ and $m_{01}=E[Y]$ are called first order moments.

8.2 Correlation

- The second-order joint moment m_{11} is called the correlation between X and Y.
- The correlation is a very important statistic and its denoted by $R_{X Y}$:

$$
\begin{equation*}
R_{X Y}=E[X Y]=m_{11}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X, Y}(x, y) d x d y \tag{26}
\end{equation*}
$$

- If $R_{X Y}=E[X] E[Y]$ then X and Y are said to be uncorrelated.
- If X and Y are independent then $f_{X, Y}(\mathrm{x}, \mathrm{y})=f_{X}(x) f_{Y}(y)$ and

$$
\begin{equation*}
R_{X Y}=\int_{-\infty}^{\infty} x f_{X}(x) d_{x} \int_{-\infty}^{\infty} y f_{Y}(y) d y=E[X] E[Y] \tag{27}
\end{equation*}
$$

- Therefore, if X and Y are independent then they are uncorrelated.
- However, if X and Y are uncorrelated, it is not necessary that they are independent.
- If $R_{X Y}=0$ then X and Y are called orthogonal.

Example 11

Let $E[X]=3, \sigma_{x}{ }^{2}=2$, let also $Y=-6 X+22$
Find $R_{X Y}$?
Are X and Y Orthogonal?
Are X and Y uncorrelated?

Solution:

$R_{X Y}=\mathrm{E}[\mathrm{XY}]=\mathrm{E}[\mathrm{X}(-6 \mathrm{X}+22)]$
$=E\left[-6 X^{2}\right]+E[22 X] \quad$ we know $\sigma_{x}^{2}=E\left[X^{2}\right]-\bar{X}^{2}$
$E\left[X^{2}\right]=\sigma_{x}{ }^{2}+\bar{X}^{2}=11$
$R_{X Y}=-6(11)+22(3)=0 \Rightarrow \mathrm{X}$ and Y are Orthogonal
$E[Y]=-6 E[X]+22=-6(3)+22=4 \Rightarrow \mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}]=12$
$R_{X Y} \neq E[X] E[Y] \Rightarrow \mathrm{X}$ and Y are not uncorrelated.

8.3 Joint central moments

- The joint central moment is defined as:

$$
\begin{align*}
& u_{n k}=E\left[(X-\bar{X})^{n}(Y-\bar{Y})^{k}\right] \\
& \quad=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-\bar{X})^{n}(y-\bar{Y})^{k} f_{X, Y}(x, y) d x d y \tag{28}
\end{align*}
$$

We note that:
$u_{20}=E\left[(X-\bar{X})^{2}\right]=\sigma_{X}{ }^{2} \quad$ is the variance of X.
$u_{o 2}=E\left[(Y-\bar{Y})^{2}\right]=\sigma_{Y}{ }^{2}$ is the variance of Y.

8.4 Covariance

- The second order joint central moment $\boldsymbol{u}_{\mathbf{1 1}}$ is called the covariance of X and Y and denoted by $C_{X Y}$.

$$
\begin{equation*}
C_{X Y}=u_{11}=E[(X-\bar{X})(Y-\bar{Y})]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-\bar{X})(y-\bar{Y}) f_{X, Y}(x, y) d x d y \tag{29}
\end{equation*}
$$

We have

$$
\begin{equation*}
C_{X Y}=E[X Y]-\bar{X} \bar{Y}=R_{X Y}-E[X] E[Y] \tag{30}
\end{equation*}
$$

- If X and Y are uncorrelated (or independent), then $C_{X Y}=0$
- If X and Y are orthogonal, then $C_{X Y=}-\bar{X} \bar{Y}$
- If X and Y are correlated, then the correlation coefficient $\boldsymbol{\rho}$ measures the degree of correlation between X and Y :

$$
\begin{equation*}
\rho=\frac{\mu_{11}}{\sqrt{\mu_{20} \mu_{02}}}=\frac{C_{X Y}}{\sigma_{X} \sigma_{Y}}=E\left[\left(\frac{X-\bar{X}}{\sigma_{X}}\right)\left(\frac{Y-\bar{Y}}{\sigma_{Y}}\right)\right] \tag{31}
\end{equation*}
$$

It is important to note that: $-1 \leq \rho \leq 1$

Example 12

Let $g=a X+b Y$ find $\sigma_{g}{ }^{2}$ when X and Y are uncorrelated

Solution:

$$
\begin{aligned}
& \sigma_{g}^{2}=E\left[g^{2}\right]-E[g]^{2} \\
& E\left[g^{2}\right]=E\left[(a X+b Y)^{2}\right]=a^{2} E\left[X^{2}\right]+2 a b E[X Y]+b^{2} E\left[Y^{2}\right] \\
& E[g]^{2}=(a E[X]+b[Y])^{2}=a^{2} \bar{X}^{2}+2 a b \bar{X} \bar{Y}+b^{2} \bar{Y}^{2} \\
& \sigma_{g}^{2}=\mathrm{a}^{2}\left(E\left[X^{2}\right]-\bar{X}^{2}\right)+2 a b(E[X Y]-\bar{X} \bar{Y})+b^{2}\left(E\left[Y^{2}\right]-\bar{Y}^{2}\right) \\
& \quad=a^{2} \sigma_{X}^{2}+2 a b C_{X Y}+b^{2} \sigma_{Y}^{2}
\end{aligned}
$$

if X and Y are uncorrelated, $C_{X Y}=0 \Rightarrow \sigma_{g}{ }^{2}=a^{2} \sigma_{X}{ }^{2}+b^{2} \sigma_{Y}{ }^{2}$

9 Joint Characteristic functions

- The joint characteristic function of two random variables is defined by:

$$
\begin{equation*}
\emptyset_{X, Y}\left(\omega_{1}, \omega_{2}\right)=E\left[e^{j \omega_{1} X+j \omega_{2} Y}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{e^{j \omega_{1} x+j \omega_{2} y}} f_{X, Y}(x, y) d x d y \tag{32}
\end{equation*}
$$

ω_{1} and ω_{2} are real numbers.

- By setting $\omega_{1}=0$ or $\omega_{2}=0$, we obtain the marginal characteristic function:

$$
\begin{align*}
& \emptyset_{X}\left(\omega_{1}\right)=\emptyset_{X, Y}\left(\omega_{1}, 0\right) \\
& \emptyset_{Y}\left(\omega_{2}\right)=\emptyset_{X, Y}\left(0, \omega_{2}\right) \tag{33}
\end{align*}
$$

- The joint moments are obtained as :

$$
\begin{equation*}
m_{n k}=\left.(-j)^{n+k} \frac{\partial^{n+k} \emptyset_{X, Y}\left(\omega_{1}, \omega_{2}\right)}{\partial_{\omega_{1}}{ }^{n} \partial_{\omega_{1}}{ }^{k}}\right|_{\omega_{1}=0, \omega_{2}=0} \tag{34}
\end{equation*}
$$

Example 1

Let us consider the joint characteristic function: $\emptyset_{X, Y}\left(\omega_{1}, \omega_{2}\right)=e^{-2 \omega_{1}{ }^{2}-8 \omega_{2}{ }^{2}}$

Find $E[X]$ and $E[Y]$
Are X and Y uncorrelated?
Solution:

$$
\begin{aligned}
& \begin{aligned}
E\left[X^{1} Y^{0}\right]=\bar{X} & =m_{10}=-\left.j \frac{d \emptyset_{X, Y}\left(w_{1}, w_{2}\right)}{d w_{1}}\right|_{w_{1}=w_{2}=0} \\
= & -\left.j\left(-4 w_{1} e^{-2 w_{1}^{2}-8 w_{2}^{2}}\right)\right|_{w_{1}=0=w_{2}}=0
\end{aligned} \\
& \begin{array}{r}
E\left[X^{0} Y^{1}\right]=\bar{Y}
\end{array}=m_{01}=-\left.j\left(-16 w_{2} e^{-2 w_{1}^{2}-8 w_{2}^{2}}\right)\right|_{w_{1}=w_{2}=0}=0 \\
& R_{X Y}=E[X Y]=m_{11}=\left.(-j)^{2} \frac{d^{2} \emptyset_{X, Y}\left(w_{1}, w_{2}\right)}{d w_{1} d w_{2}}\right|_{w_{1}=w_{2}=0}=0 \\
& \quad=-\left.\left(-4 w_{1}\right)\left(-16 w_{2}\right) e^{-2 w_{1}^{2}-8 w_{2}^{2}}\right|_{w_{1}=w_{2}=0}=0
\end{aligned}
$$

$R_{X Y}=0=E[X] E[Y] \Rightarrow \mathrm{X}$ and Y are uncorrelated.

