PROBLEMS

1, 2, 3 = straightforward, intermediate, challenging $\quad \square=$ full solution available in the Student Solutions Manual and Study Guide
$=$ coached solution with hints available at http://www.pse6.com $\quad \square=$ computer useful in solving problem
$=$ paired numerical and symbolic problems

Section 32.1 Self-Inductance

1. A coil has an inductance of 3.00 mH , and the current in it changes from 0.200 A to 1.50 A in a time of 0.200 s . Find the magnitude of the average induced emf in the coil during this time.
2. A coiled telephone cord forms a spiral with 70 turns, a diameter of 1.30 cm , and an unstretched length of 60.0 cm . Determine the self-inductance of one conductor in the unstretched cord.
3. A $2.00-\mathrm{H}$ inductor carries a steady current of 0.500 A . When the switch in the circuit is opened, the current is effectively zero after 10.0 ms . What is the average induced emf in the inductor during this time?
4. Calculate the magnetic flux through the area enclosed by a 300 -turn, $7.20-\mathrm{mH}$ coil when the current in the coil is 10.0 mA .
5. $200 \mathrm{~A} 10.0-\mathrm{mH}$ inductor carries a current $I=I_{\max } \sin \omega t$, with $I_{\max }=5.00 \mathrm{~A}$ and $\omega / 2 \pi=60.0 \mathrm{~Hz}$. What is the back emf as a function of time?
6. An emf of 24.0 mV is induced in a 500 -turn coil at an instant when the current is 4.00 A and is changing at the rate of $10.0 \mathrm{~A} / \mathrm{s}$. What is the magnetic flux through each turn of the coil?
7. An inductor in the form of a solenoid contains 420 turns, is 16.0 cm in length, and has a cross-sectional area of $3.00 \mathrm{~cm}^{2}$. What uniform rate of decrease of current through the inductor induces an emf of $175 \mu \mathrm{~V}$?
8. The current in a $90.0-\mathrm{mH}$ inductor changes with time as $I=1.00 t^{2}-6.00 t$ (in SI units). Find the magnitude of the induced emf at (a) $t=1.00 \mathrm{~s}$ and (b) $t=4.00 \mathrm{~s}$. (c) At what time is the emf zero?
9. A $40.0-\mathrm{mA}$ current is carried by a uniformly wound air-core solenoid with 450 turns, a $15.0-\mathrm{mm}$ diameter, and $12.0-\mathrm{cm}$ length. Compute (a) the magnetic field inside the solenoid, (b) the magnetic flux through each turn, and (c) the inductance of the solenoid. (d) What If? If the current were different, which of these quantities would change?
10. A solenoid has 120 turns uniformly wrapped around a wooden core, which has a diameter of 10.0 mm and a length of 9.00 cm . (a) Calculate the inductance of the solenoid. (b) What If? The wooden core is replaced with a soft iron rod that has the same dimensions, but a magnetic permeability $\mu_{m}=800 \mu_{0}$. What is the new inductance?
11. A piece of copper wire with thin insulation, 200 m long and 1.00 mm in diameter, is wound onto a plastic tube to form a long solenoid. This coil has a circular cross section and consists of tightly wound turns in one layer. If the current in the solenoid drops linearly from 1.80 A to zero in 0.120 seconds, an emf of 80.0 mV is induced in the coil. What is the length of the solenoid, measured along its axis?
12. A toroid has a major radius R and a minor radius r, and is tightly wound with N turns of wire, as shown in Figure P32.12. If $R \gg r$, the magnetic field in the region enclosed by the wire of the torus, of cross-sectional area $A=\pi r^{2}$, is essentially the same as the magnetic field of a solenoid that has been bent into a large circle of radius R. Modeling the field as the uniform field of a long solenoid, show that the self-inductance of such a toroid is approximately

$$
L \approx \frac{\mu_{0} N^{2} A}{2 \pi R}
$$

(An exact expression of the inductance of a toroid with a rectangular cross section is derived in Problem 64.)

Figure P32.12
13. A self-induced emf in a solenoid of inductance L changes in time as $\boldsymbol{\varepsilon}=\boldsymbol{\varepsilon}_{0} e^{-k t}$. Find the total charge that passes through the solenoid, assuming the charge is finite.

Section 32.2 RL Circuits

14. Calculate the resistance in an $R L$ circuit in which $L=2.50 \mathrm{H}$ and the current increases to 90.0% of its final value in 3.00 s .
15. A 12.0-V battery is connected into a series circuit containing a $10.0-\Omega$ resistor and a $2.00-\mathrm{H}$ inductor. How long will it take the current to reach (a) 50.0% and (b) 90.0% of its final value?
16. Show that $I=I_{0} e^{-t / \tau}$ is a solution of the differential equation

$$
I R+L \frac{d I}{d t}=0
$$

where $\tau=L / R$ and I_{0} is the current at $t=0$.
17. Consider the circuit in Figure P32.17, taking $\boldsymbol{\varepsilon}=6.00 \mathrm{~V}$, $L=8.00 \mathrm{mH}$, and $R=4.00 \Omega$. (a) What is the inductive time constant of the circuit? (b) Calculate the current in

Figure P32.17 Problems 17, 18, 19, and 22.
the circuit 250μ s after the switch is closed. (c) What is the value of the final steady-state current? (d) How long does it take the current to reach 80.0% of its maximum value?
18. In the circuit shown in Figure P32.17, let $L=7.00 \mathrm{H}$, $R=9.00 \Omega$, and $\boldsymbol{\varepsilon}=120 \mathrm{~V}$. What is the self-induced emf 0.200 s after the switch is closed?
19. 2 For the $R L$ circuit shown in Figure P32.17, let the inductance be 3.00 H , the resistance 8.00Ω, and the battery emf 36.0 V . (a) Calculate the ratio of the potential difference across the resistor to that across the inductor when the current is 2.00 A . (b) Calculate the voltage across the inductor when the current is 4.50 A .
20. A $12.0-\mathrm{V}$ battery is connected in series with a resistor and an inductor. The circuit has a time constant of $500 \mu \mathrm{~s}$, and the maximum current is 200 mA . What is the value of the inductance?
21. An inductor that has an inductance of 15.0 H and a resistance of 30.0Ω is connected across a $100-\mathrm{V}$ battery. What is the rate of increase of the current (a) at $t=0$ and (b) at $t=1.50 \mathrm{~s}$?
22. When the switch in Figure P32.17 is closed, the current takes 3.00 ms to reach 98.0% of its final value. If $R=10.0 \Omega$, what is the inductance?
23. The switch in Figure P32.23 is open for $t<0$ and then closed at time $t=0$. Find the current in the inductor and the current in the switch as functions of time thereafter.

Figure P32.23
24. A series $R L$ circuit with $L=3.00 \mathrm{H}$ and a series $R C$ circuit with $C=3.00 \mu \mathrm{~F}$ have equal time constants. If the two circuits contain the same resistance R, (a) what is the value of R and (b) what is the time constant?
25. A current pulse is fed to the partial circuit shown in Figure P32.25. The current begins at zero, then becomes 10.0 A between $t=0$ and $t=200 \mu \mathrm{~s}$, and then is zero once again. Determine the current in the inductor as a function of time.

Figure P32.25
26. One application of an $R L$ circuit is the generation of timevarying high voltage from a low-voltage source, as shown in Figure P32.26. (a) What is the current in the circuit a long time after the switch has been in position a ? (b) Now the switch is thrown quickly from a to b. Compute the initial voltage across each resistor and across the inductor. (c) How much time elapses before the voltage across the inductor drops to 12.0 V ?

Figure P32.26
27. Auw A $140-\mathrm{mH}$ inductor and a $4.90-\Omega$ resistor are connected with a switch to a $6.00-\mathrm{V}$ battery as shown in Figure P32.27. (a) If the switch is thrown to the left (connecting the battery), how much time elapses before the current reaches 220 mA ? (b) What is the current in the inductor 10.0 s after the switch is closed? (c) Now the switch is quickly thrown from a to b. How much time elapses before the current falls to 160 mA ?

Figure P32.27
28. Consider two ideal inductors L_{1} and L_{2} that have zero internal resistance and are far apart, so that their magnetic fields do not influence each other. (a) Assuming these inductors
are connected in series, show that they are equivalent to a single ideal inductor having $L_{\mathrm{eq}}=L_{1}+L_{2}$. (b) Assuming these same two inductors are connected in parallel, show that they are equivalent to a single ideal inductor having $1 / L_{\mathrm{eq}}=1 / L_{1}+1 / L_{2}$. (c) What If? Now consider two inductors L_{1} and L_{2} that have nonzero internal resistances R_{1} and R_{2}, respectively. Assume they are still far apart so that their mutual inductance is zero. Assuming these inductors are connected in series, show that they are equivalent to a single inductor having $L_{\mathrm{eq}}=L_{1}+L_{2}$ and $R_{\mathrm{eq}}=$ $R_{1}+R_{2}$. (d) If these same inductors are now connected in parallel, is it necessarily true that they are equivalent to a single ideal inductor having $1 / L_{\text {eq }}=1 / L_{1}+1 / L_{2}$ and $1 / R_{\text {eq }}=1 / R_{1}+1 / R_{2}$? Explain your answer.

Section 32.3 Energy in a Magnetic Field

29. Calculate the energy associated with the magnetic field of a 200 -turn solenoid in which a current of 1.75 A produces a flux of $3.70 \times 10^{-4} \mathrm{~Wb}$ in each turn.
30. The magnetic field inside a superconducting solenoid is 4.50 T . The solenoid has an inner diameter of 6.20 cm and a length of 26.0 cm . Determine (a) the magnetic energy density in the field and (b) the energy stored in the magnetic field within the solenoid.
31. An air-core solenoid with 68 turns is 8.00 cm long and has a diameter of 1.20 cm . How much energy is stored in its magnetic field when it carries a current of 0.770 A ?
32. At $t=0$, an emf of 500 V is applied to a coil that has an inductance of 0.800 H and a resistance of 30.0Ω. (a) Find the energy stored in the magnetic field when the current reaches half its maximum value. (b) After the emf is connected, how long does it take the current to reach this value?
33. 2nvy On a clear day at a certain location, a $100-\mathrm{V} / \mathrm{m}$ vertical electric field exists near the Earth's surface. At the same place, the Earth's magnetic field has a magnitude of $0.500 \times 10^{-4} \mathrm{~T}$. Compute the energy densities of the two fields.
34. Complete the calculation in Example 32.4 by proving that

$$
\int_{0}^{\infty} e^{-2 R t / L} d t=\frac{L}{2 R}
$$

35. An $R L$ circuit in which $L=4.00 \mathrm{H}$ and $R=5.00 \Omega$ is connected to a $22.0-\mathrm{V}$ battery at $t=0$. (a) What energy is stored in the inductor when the current is 0.500 A ? (b) At what rate is energy being stored in the inductor when $I=1.00 \mathrm{~A}$? (c) What power is being delivered to the circuit by the battery when $I=0.500 \mathrm{~A}$?
36. A $10.0-\mathrm{V}$ battery, a $5.00-\Omega$ resistor, and a $10.0-\mathrm{H}$ inductor are connected in series. After the current in the circuit has reached its maximum value, calculate (a) the power being supplied by the battery, (b) the power being delivered to the resistor, (c) the power being delivered to the inductor, and (d) the energy stored in the magnetic field of the inductor.
37. A uniform electric field of magnitude $680 \mathrm{kV} / \mathrm{m}$ throughout a cylindrical volume results in a total energy of $3.40 \mu \mathrm{~J}$. What magnetic field over this same region stores the same total energy?
38. Assume that the magnitude of the magnetic field outside a sphere of radius R is $B=B_{0}(R / r)^{2}$, where B_{0} is a constant. Determine the total energy stored in the magnetic field outside the sphere and evaluate your result for $B_{0}=$ $5.00 \times 10^{-5} \mathrm{~T}$ and $R=6.00 \times 10^{6} \mathrm{~m}$, values appropriate for the Earth's magnetic field.

Section 32.4 Mutual Inductance

39. Two coils are close to each other. The first coil carries a timevarying current given by $I(t)=(5.00 \mathrm{~A}) e^{-0.0250 t} \sin (377 t)$. At $t=0.800 \mathrm{~s}$, the emf measured across the second coil is -3.20 V . What is the mutual inductance of the coils?
40. Two coils, held in fixed positions, have a mutual inductance of $100 \mu \mathrm{H}$. What is the peak voltage in one when a sinusoidal current given by $I(t)=(10.0 \mathrm{~A}) \sin (1000 t)$ is in the other coil?
41. An emf of 96.0 mV is induced in the windings of a coil when the current in a nearby coil is increasing at the rate of $1.20 \mathrm{~A} / \mathrm{s}$. What is the mutual inductance of the two coils?
42. On a printed circuit board, a relatively long straight conductor and a conducting rectangular loop lie in the same plane, as shown in Figure P31.9. Taking $h=0.400 \mathrm{~mm}$, $w=1.30 \mathrm{~mm}$, and $L=2.70 \mathrm{~mm}$, find their mutual inductance.
43. Two solenoids A and B, spaced close to each other and sharing the same cylindrical axis, have 400 and 700 turns, respectively. A current of 3.50 A in coil A produces an average flux of $300 \mu \mathrm{~Wb}$ through each turn of A and a flux of $90.0 \mu \mathrm{~Wb}$ through each turn of B. (a) Calculate the mutual inductance of the two solenoids. (b) What is the self-inductance of A? (c) What emf is induced in B when the current in A increases at the rate of $0.500 \mathrm{~A} / \mathrm{s}$?
44. A large coil of radius R_{1} and having N_{1} turns is coaxial with a small coil of radius R_{2} and having N_{2} turns. The centers of the coils are separated by a distance x that is much larger than R_{1} and R_{2}. What is the mutual inductance of the coils? Suggestion: John von Neumann proved that the same answer must result from considering the flux through the first coil of the magnetic field produced by the second coil, or from considering the flux through the second coil of the magnetic field produced by the first coil. In this problem it is easy to calculate the flux through the small coil, but it is difficult to calculate the flux through the large coil, because to do so you would have to know the magnetic field away from the axis.
45. Two inductors having self-inductances L_{1} and L_{2} are connected in parallel as shown in Figure P32.45a. The mutual inductance between the two inductors is M. Determine the equivalent self-inductance $L_{\text {eq }}$ for the system (Figure P32.45b).

Figure P32.45

Section 32.5 Oscillations in an LC Circuit

46. A $1.00-\mu \mathrm{F}$ capacitor is charged by a $40.0-\mathrm{V}$ power supply. The fully charged capacitor is then discharged through a $10.0-\mathrm{mH}$ inductor. Find the maximum current in the resulting oscillations.
47. An $L C$ circuit consists of a $20.0-\mathrm{mH}$ inductor and a $0.500-\mu \mathrm{F}$ capacitor. If the maximum instantaneous current is 0.100 A , what is the greatest potential difference across the capacitor?
48. In the circuit of Figure P32.48, the battery emf is 50.0 V , the resistance is 250Ω, and the capacitance is $0.500 \mu \mathrm{~F}$. The switch S is closed for a long time and no voltage is measured across the capacitor. After the switch is opened, the potential difference across the capacitor reaches a maximum value of 150 V . What is the value of the inductance?

Figure P32.48
49. A fixed inductance $L=1.05 \mu \mathrm{H}$ is used in series with a variable capacitor in the tuning section of a radiotelephone on a ship. What capacitance tunes the circuit to the signal from a transmitter broadcasting at 6.30 MHz ?
50. Calculate the inductance of an $L C$ circuit that oscillates at 120 Hz when the capacitance is $8.00 \mu \mathrm{~F}$.
51. An $L C$ circuit like the one in Figure 32.16 contains an $82.0-\mathrm{mH}$ inductor and a $17.0-\mu \mathrm{F}$ capacitor that initially carries a $180-\mu \mathrm{C}$ charge. The switch is open for $t<0$ and then closed at $t=0$. (a) Find the frequency (in hertz) of the resulting oscillations. At $t=1.00 \mathrm{~ms}$, find (b) the charge on the capacitor and (c) the current in the circuit.
52. The switch in Figure P32.52 is connected to point a for a long time. After the switch is thrown to point b, what are (a) the frequency of oscillation of the $L C$ circuit, (b) the maximum charge that appears on the capacitor, (c) the maximum current in the inductor, and (d) the total energy the circuit possesses at $t=3.00 \mathrm{~s}$?

Figure P32.52

An $L C$ circuit like that in Figure 32.16 consists of a $3.30-\mathrm{H}$ inductor and an $840-\mathrm{pF}$ capacitor, initially carrying a $105-\mu \mathrm{C}$ charge. The switch is open for $t<0$ and then closed at $t=0$. Compute the following quantities at $t=2.00 \mathrm{~ms}$:
(a) the energy stored in the capacitor; (b) the energy stored in the inductor; (c) the total energy in the circuit.

Section 32.6 The RLC Circuit

54. In Figure 32.21, let $R=7.60 \Omega, L=2.20 \mathrm{mH}$, and $C=$ $1.80 \mu \mathrm{~F}$. (a) Calculate the frequency of the damped oscillation of the circuit. (b) What is the critical resistance?
55. Consider an $L C$ circuit in which $L=500 \mathrm{mH}$ and $C=0.100 \mu \mathrm{~F}$. (a) What is the resonance frequency ω_{0} ? (b) If a resistance of $1.00 \mathrm{k} \Omega$ is introduced into this circuit, what is the frequency of the (damped) oscillations? (c) What is the percent difference between the two frequencies?
56. Show that Equation 32.28 in the text is Kirchhoff's loop rule as applied to the circuit in Figure 32.21.
57. The energy of an RLC circuit decreases by 1.00% during each oscillation when $R=2.00 \Omega$. If this resistance is removed, the resulting $L C$ circuit oscillates at a frequency of 1.00 kHz . Find the values of the inductance and the capacitance.
58. Electrical oscillations are initiated in a series circuit containing a capacitance C, inductance L, and resistance R. (a) If $R \ll \sqrt{4 L / C}$ (weak damping), how much time elapses before the amplitude of the current oscillation falls off to 50.0% of its initial value? (b) How long does it take the energy to decrease to 50.0% of its initial value?

Additional Problems

59. Review problem. This problem extends the reasoning of Section 26.4, Problem 26.37, Example 30.6, and Section 32.3. (a) Consider a capacitor with vacuum between its large, closely spaced, oppositely charged parallel plates. Show that the force on one plate can be accounted for by thinking of the electric field between the plates as exerting a "negative pressure" equal to the energy density of the electric field. (b) Consider two infinite plane sheets carrying electric currents in opposite directions with equal linear current densities J_{s}. Calculate the force per area acting on one sheet due to the magnetic field created by the other sheet. (c) Calculate the net magnetic field between the sheets and the field outside of the volume between them. (d) Calculate the energy density in the magnetic field between the sheets. (e) Show that the force on one sheet can be accounted for by thinking of the magnetic field between the sheets as exerting a positive pressure equal to its energy density. This result for magnetic pressure applies to all current configurations, not just to sheets of current.
60. Initially, the capacitor in a series $L C$ circuit is charged. A switch is closed at $t=0$, allowing the capacitor to discharge, and at time t the energy stored in the capacitor is one fourth of its initial value. Determine L, assuming C is known.
61. A $1.00-\mathrm{mH}$ inductor and a $1.00-\mu \mathrm{F}$ capacitor are connected in series. The current in the circuit is described by $I=20.0 t$, where t is in seconds and I is in amperes. The capacitor initially has no charge. Determine (a) the
voltage across the inductor as a function of time, (b) the voltage across the capacitor as a function of time, and (c) the time when the energy stored in the capacitor first exceeds that in the inductor.
62. An inductor having inductance L and a capacitor having capacitance C are connected in series. The current in the circuit increases linearly in time as described by $I=K t$, where K is a constant. The capacitor is initially uncharged. Determine (a) the voltage across the inductor as a function of time, (b) the voltage across the capacitor as a function of time, and (c) the time when the energy stored in the capacitor first exceeds that in the inductor.
63. A capacitor in a series $L C$ circuit has an initial charge Q and is being discharged. Find, in terms of L and C, the flux through each of the N turns in the coil, when the charge on the capacitor is $Q / 2$.
64. The toroid in Figure P32.64 consists of N turns and has a rectangular cross section. Its inner and outer radii are a and b, respectively. (a) Show that the inductance of the toroid is

$$
L=\frac{\mu_{0} N^{2} h}{2 \pi} \ln \frac{b}{a}
$$

(b) Using this result, compute the self-inductance of a 500 -turn toroid for which $a=10.0 \mathrm{~cm}, b=12.0 \mathrm{~cm}$, and $h=1.00 \mathrm{~cm}$. (c) What If? In Problem 12, an approximate expression for the inductance of a toroid with $R \gg r$ was derived. To get a feel for the accuracy of that result, use the expression in Problem 12 to compute the approximate inductance of the toroid described in part (b). Compare the result with the answer to part (b).

Figure P32.64
65. (a) A flat circular coil does not really produce a uniform magnetic field in the area it encloses, but estimate the selfinductance of a flat, compact circular coil, with radius R and N turns, by assuming that the field at its center is uniform over its area. (b) A circuit on a laboratory table consists of a 1.5 -volt battery, a $270-\Omega$ resistor, a switch, and three $30-\mathrm{cm}$-long patch cords connecting them. Suppose the circuit is arranged to be circular. Think of it as a flat coil with one turn. Compute the order of magnitude of its self-inductance and (c) of the time constant describing how fast the current increases when you close the switch.
66. A soft iron $\operatorname{rod}\left(\mu_{m}=800 \mu_{0}\right)$ is used as the core of a solenoid. The rod has a diameter of 24.0 mm and is 10.0 cm long. A $10.0-\mathrm{m}$ piece of 22 -gauge copper wire (diameter $=$ 0.644 mm) is wrapped around the rod in a single uniform layer, except for a $10.0-\mathrm{cm}$ length at each end, which is to
be used for connections. (a) How many turns of this wire can be wrapped around the rod? For an accurate answer you should add the diameter of the wire to the diameter of the rod in determining the circumference of each turn. Also note that the wire spirals diagonally along the surface of the rod. (b) What is the resistance of this inductor? (c) What is its inductance?
67. A wire of nonmagnetic material, with radius R, carries current uniformly distributed over its cross section. The total current carried by the wire is I. Show that the magnetic energy per unit length inside the wire is $\mu_{0} I^{2} / 16 \pi$.
68. An 820 -turn wire coil of resistance 24.0Ω is placed around a 12500 -turn solenoid 7.00 cm long, as shown in Figure P32.68. Both coil and solenoid have cross-sectional areas of $1.00 \times 10^{-4} \mathrm{~m}^{2}$. (a) How long does it take the solenoid current to reach 63.2% of its maximum value? Determine (b) the average back emf caused by the self-inductance of the solenoid during this time interval, (c) the average rate of change in magnetic flux through the coil during this time interval, and (d) the magnitude of the average induced current in the coil.

Figure P32.68
69. At $t=0$, the open switch in Figure P32.69 is closed. By using Kirchhoff's rules for the instantaneous currents and voltages in this two-loop circuit, show that the current in the inductor at time $t>0$ is

$$
I(t)=\frac{\boldsymbol{\varepsilon}}{R_{1}}\left[1-e^{-\left(R^{\prime} / L\right) t}\right]
$$

where $R^{\prime}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)$.

Figure P32.69 Problems 69 and 70.
70. In Figure P32.69 take $\boldsymbol{\varepsilon}=6.00 \mathrm{~V}, R_{1}=5.00 \Omega$, and $R_{2}=1.00 \Omega$. The inductor has negligible resistance. When the switch is opened after having been closed for a long time, the current in the inductor drops to 0.250 A in 0.150 s . What is the inductance of the inductor?
71. In Figure P32.71, the switch is closed for $t<0$, and steadystate conditions are established. The switch is opened at $t=0$. (a) Find the initial voltage $\boldsymbol{\varepsilon}_{0}$ across L just after $t=0$. Which end of the coil is at the higher potential: a or b ? (b) Make freehand graphs of the currents in R_{1} and in R_{2} as a function of time, treating the steady-state directions as positive. Show values before and after $t=0$. (c) How long after $t=0$ does the current in R_{2} have the value 2.00 mA ?

Figure P32.71
72. The open switch in Figure P32.72 is closed at $t=0$. Before the switch is closed, the capacitor is uncharged, and all currents are zero. Determine the currents in L, C, and R and the potential differences across L, C, and $R($ a) at the instant after the switch is closed, and (b) long after it is closed.

Figure P32.72
73. To prevent damage from arcing in an electric motor, a discharge resistor is sometimes placed in parallel with the armature. If the motor is suddenly unplugged while running, this resistor limits the voltage that appears across the armature coils. Consider a $12.0-\mathrm{V}$ DC motor with an armature that has a resistance of 7.50Ω and an inductance of 450 mH . Assume the back emf in the armature coils is 10.0 V when the motor is running at normal speed. (The equivalent circuit for the armature is shown in Figure P32.73.) Calculate the maximum resistance R that limits the voltage across the armature to 80.0 V when the motor is unplugged.

Figure P32.73
74. An air-core solenoid 0.500 m in length contains 1000 turns and has a cross-sectional area of $1.00 \mathrm{~cm}^{2}$. (a) Ignoring end effects, find the self-inductance. (b) A secondary winding wrapped around the center of the solenoid has 100 turns. What is the mutual inductance? (c) The secondary winding carries a constant current of 1.00 A , and the solenoid is connected to a load of $1.00 \mathrm{k} \Omega$. The constant current is suddenly stopped. How much charge flows through the load resistor?
75. The lead-in wires from a television antenna are often constructed in the form of two parallel wires (Fig. P32.75). (a) Why does this configuration of conductors have an inductance? (b) What constitutes the flux loop for this configuration? (c) Ignoring any magnetic flux inside the wires, show that the inductance of a length x of this type of lead-in is

$$
L=\frac{\mu_{0} x}{\pi} \ln \left(\frac{w-a}{a}\right)
$$

where a is the radius of the wires and w is their center-tocenter separation.

Figure P32.75

Review problems. Problems 76 through 79 apply ideas from this chapter and earlier chapters to some properties of superconductors, which were introduced in Section 27.5.
76. The resistance of a superconductor. In an experiment carried out by S. C. Collins between 1955 and 1958, a current was maintained in a superconducting lead ring for 2.50 yr with no observed loss. If the inductance of the ring was $3.14 \times 10^{-8} \mathrm{H}$, and the sensitivity of the experiment was

1 part in 10^{9}, what was the maximum resistance of the ring? (Suggestion: Treat this as a decaying current in an $R L$ circuit, and recall that $e^{-x} \approx 1-x$ for small x.)
77. A novel method of storing energy has been proposed. A huge underground superconducting coil, 1.00 km in diameter, would be fabricated. It would carry a maximum current of 50.0 kA through each winding of a 150 -turn $\mathrm{Nb}_{3} \mathrm{Sn}$ solenoid. (a) If the inductance of this huge coil were 50.0 H , what would be the total energy stored? (b) What would be the compressive force per meter length acting between two adjacent windings 0.250 m apart?
78. Superconducting power transmission. The use of superconductors has been proposed for power transmission lines. A single coaxial cable (Fig. P32.78) could carry $1.00 \times 10^{3} \mathrm{MW}$ (the output of a large power plant) at $200 \mathrm{kV}, \mathrm{DC}$, over a distance of 1000 km without loss. An inner wire of radius 2.00 cm , made from the superconductor $\mathrm{Nb}_{3} \mathrm{Sn}$, carries the current I in one direction. A surrounding superconducting cylinder, of radius 5.00 cm , would carry the return current I. In such a system, what is the magnetic field (a) at the surface of the inner conductor and (b) at the inner surface of the outer conductor? (c) How much energy would be stored in the space between the conductors in a $1000-\mathrm{km}$ superconducting line? (d) What is the pressure exerted on the outer conductor?

Figure P32.78
79. The Meissner effect. Compare this problem with Problem 65 in Chapter 26, on the force attracting a perfect dielectric into a strong electric field. A fundamental property of a Type I superconducting material is perfect diamagnetism, or demonstration of the Meissner effect, illustrated in Figure 30.35, and described as follows. The superconducting material has $\mathbf{B}=0$ everywhere inside it. If a sample of the material is placed into an externally produced magnetic field, or if it is cooled to become superconducting while it is in a magnetic field, electric currents appear on the surface of the sample. The currents have precisely the strength and orientation required to make the total magnetic field zero throughout the interior of the sample. The following problem will help you to understand the magnetic force that can then act on the superconducting sample.

A vertical solenoid with a length of 120 cm and a diameter of 2.50 cm consists of 1400 turns of copper wire carrying a counterclockwise current of 2.00 A , as in Figure P32.79a. (a) Find the magnetic field in the vacuum inside the solenoid. (b) Find the energy density of the magnetic

Figure P32.79
field, and note that the units $\mathrm{J} / \mathrm{m}^{3}$ of energy density are the same as the units $\mathrm{N} / \mathrm{m}^{2}$ of pressure. (c) Now a superconducting bar 2.20 cm in diameter is inserted partway into the solenoid. Its upper end is far outside the solenoid, where the magnetic field is negligible. The lower end of the bar is deep inside the solenoid. Identify the direction required for the current on the curved surface of the bar, so that the total magnetic field is zero within the bar. The field created by the supercurrents is sketched in Figure P32.79b, and the total field is sketched in Figure P32.79c.
(d) The field of the solenoid exerts a force on the current in the superconductor. Identify the direction of the force on the bar. (e) Calculate the magnitude of the force by multiplying the energy density of the solenoid field times the area of the bottom end of the superconducting bar.

Answers to Quick Quizzes

32.1 (c), (f). For the constant current in (a) and (b), there is no potential difference across the resistanceless inductor. In (c), if the current increases, the emf induced in the inductor is in the opposite direction, from b to a, making a higher in potential than b. Similarly, in (f), the decreasing current induces an emf in the same direction as the current, from b to a, again making the potential higher at a than b.
32.2 (b), (d). As the switch is closed, there is no current, so there is no voltage across the resistor. After a long time, the current has reached its final value, and the inductor has no further effect on the circuit.
32.3 (b). When the iron rod is inserted into the solenoid, the inductance of the coil increases. As a result, more potential difference appears across the coil than before.

Consequently, less potential difference appears across the bulb, so the bulb is dimmer.
32.4 (b). Figure 32.10 shows that circuit B has the greater time constant because in this circuit it takes longer for the current to reach its maximum value and then longer for this current to decrease to zero after the switch is thrown to position b. Equation 32.8 indicates that, for equal resistances R_{A} and R_{B}, the condition $\tau_{\mathrm{B}}>\tau_{\mathrm{A}}$ means that $L_{\mathrm{A}}<L_{\mathrm{B}}$.
32.5 (a), (d). Because the energy density depends on the magnitude of the magnetic field, to increase the energy density, we must increase the magnetic field. For a solenoid, $B=\mu_{0} n I$, where n is the number of turns per unit length. In (a), we increase n to increase the magnetic field. In
(b), the change in cross-sectional area has no effect on the magnetic field. In (c), increasing the length but keeping n fixed has no effect on the magnetic field. Increasing the current in (d) increases the magnetic field in the solenoid.
32.6 (a). M_{12} increases because the magnetic flux through coil 2 increases.
32.7 (b). If the current is at its maximum value, the charge on the capacitor is zero.
32.8 (c). If the current is zero, this is the instant at which the capacitor is fully charged and the current is about to reverse direction.

