

324 Stat Lecture Notes

(3) Mathematical Expectation

(Book: Chapter 4, pg 111-137)

Mean of a Random Variable:

Definition:

Let X be a random variable with probability distribution f(x). The mean or expected value of X is:

$$\mu = E(X) = \sum_{\forall X} X f(X) \quad if X is discrete$$
$$\mu = E(X) = \int_{-\infty}^{\infty} X f(X) dX \quad if X is continuous \quad (1)$$

Properties of the Expectation:

- 1. E(a) = a, where a is a constant
- 2. E(a X) = a E(X)
- 3. E(a X + b) = a E(X) + b

Ex (1):

Find the expected number of chemists on a committee of 3

selected at random from 4 chemists and 3 biologists.

Find: E (5), E (3x), E (2x-1)

Let **X** represent the number of chemists on the committee.

The probability distribution of **X** is given by:

$$f(x) = \frac{\binom{4}{\binom{3}{3-x}}}{\binom{7}{3}} , \quad X = 0,1,2,3$$

 $\frac{0 \left| \left(3 \right) \right|}{\left(\frac{7}{2} \right)} = \frac{1}{35} \quad ,$ $\frac{1 \left| 2 \right|}{\left(7\right)} = \frac{12}{35}$, 3 3 $\frac{2 \left| \begin{pmatrix} 1 \\ 1 \\ \hline \\ 1 \\ \hline \\ 3 \\ \hline \end{bmatrix}}{\left(\begin{array}{c} 7 \\ 3 \\ \hline \\ 3 \\ \hline \end{bmatrix}} = \frac{18}{35} , \qquad f(3) =$ 3 0 $\left(\overline{7}\right)$ 35 3 3

X	0	1	2	3	Σ
f(x)	1/35	12/35	18/35	4/35	1
x f(x)	0	12/35	36/35	12/35	60/35=1.71

$$E(X) = \mu_X = \sum xf(x) = \frac{60}{35} = 1.71$$

$$E(5) = 5$$

See Ex 4.1
pg 113

E(3x) = 3E(x) = 3(60/35) = 5.143

E(2x - 1) = 2E(x) - 1 = 2(60/35) - 1 = 2.429

Ex 4.3 pg114:

Let **X** be a random variable that denotes the life in hours of a certain electronic device. The probability density function is given by:

$$f(x) = \begin{cases} \frac{20000}{X^3} &, X > 100\\ 0 & otherwise \end{cases}$$

Find the expected life of this type of device

$$\mu = E(X) = \int_{-\infty}^{\infty} xf(x) dx = \int_{100}^{\infty} X(\frac{20000}{X^3}) dX$$

$$= \int_{100}^{\infty} \frac{2000}{X^{2}} dX = 20000 \int_{100}^{\infty} X^{-2} dX$$

$$= 20000(\frac{X^{-1}}{-1})_{100} \mid^{\infty} = 20000[(100)^{-1} - (\infty)^{-1}]$$
$$= \frac{20000}{100} - \frac{20000}{\infty} = 200 - 0 = 200$$

EX 4.4 pg 115:

Suppose that the number of cars **X** that pass through a car wash between **4** P.M. and **5** P.M. on any sunny Friday has the following probability distribution:

X	4	5	6	7	8	9
f(X)	1/12	1/12	1/4	1/4	1/6	1/6

Let g(x) = 2 x-1 represent the amount of money in dollars, paid to the attendant by the manager. Find the attendant's expected earning for this particular time period.

X	4	5	6	7	8	9	\sum
f(X)	1/12	1/12	1/4	1/4	1/6	1/6	1
X f(x)	4/12	5/12	6/4	7/4	8/6	9/6	164/24

$$E(g(x)) = E(2x-1) = 2E(X) - 1 =$$
$$= 2\left(\frac{164}{24}\right) - 1 = 12.67$$

Ex (4.5 pg 115):

Let **X** be a random variable with density function:

$$f(x) = \begin{cases} \frac{X^2}{3} & -1 < x < 2\\ 0 & otherwise \end{cases}$$

Find the expected value of g(x) = 4x+3

$$E(X) = \int_{-1}^{2} x(\frac{x^{2}}{3}) dx = \int_{-1}^{2} (\frac{x^{3}}{3}) dx = (\frac{x^{4}}{12})_{-1} |^{2}$$
$$= \frac{1}{12} [2^{4} - (-1)^{4}] = \frac{1}{12} (16 - 1) = \frac{15}{12}$$

$$E(g(x)) = E(4x+3) = 4E(X) + 3 = 4(\frac{15}{12}) + 3 = 8$$

Variance:

Definition:

Let **X** be a random variable with probability distribution $\mathbf{f}(\mathbf{x})$ and mean μ . The variance of **X** is denoted by V(x) or σ_x^2 : $V(x) = \sigma^2 = E(x - \mu)^2 = \sum_{\forall x} (x - \mu)^2 f(x) = E(X^2) - (E(X))^2$ if x is discrete (2) $V(x) = \sigma^2 = E(x - \mu)^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = E(X^2) - (E(X))^2 if x is continuous$ (3)

where:

$$E(x^{2}) = \begin{cases} \sum x^{2} f(x) & \text{if } x \text{ is discrete} \\ \int_{-\infty}^{\infty} x^{2} f(x) dx \text{ if } x \text{ is continuous} \end{cases}$$

Properties of the variance:

- 1. V(a) = 0 where **a** is a constant
- 2. $V(aX) = a^2 V(X)$

$$3. \quad V(aX+b) = a^2 V(X) + 0$$

The Standard Deviation:

The positive square root of the variance, σ is called the standard deviation of **X** which is given by:

$$\sigma_{X} = \sqrt{V(x)} = \sqrt{E(x - \mu_{X})^{2}}$$

Ex (4.8 pg 120):

The probability distribution for company A is given by:

X	1	2	3
f(x)	0.3	0.4	0.3

and for company **B** is given by:

Y	0	1	2	3	4
f(y)	0.2	0.1	0.3	0.3	0.1

Show that the variance of the probability distribution for company \mathbf{B}

is greater than that of company A.

X	1	2	3	\sum
f(x)	0.3	0.4	0.3	1
x f(x)	0.3	0.8	0.9	2
$f(\mathbf{X}) x^2$	0.3	1.6	2.7	4.6

 $\sigma^2 = E(x^2) - (E(x))^2 = 4.6 - 4 = 0.6, \sigma = .77$

Y	0	1	2	3	4	\sum
f(y)	0.2	0.1	0.3	0.3	0.1	1
Y f(y)	0	0.1.	0.6	0.9	0.4	2
<i>y</i> ² f(y)	0	0.1	1.2	2.7	1.6	5.6

$$\sigma^2 = E(y^2) - (E(y))^2 = 5.6 - 4 = 1.6, \sigma = 1.26$$

Note that σ_y^2 is greater than σ_x^2 .

Ex (4.10 pg 121):

The weekly demand for a drinking-water product, in thousands of liters from a local chain of efficiency stores having the probability density:

$$f(x) = \begin{cases} 2(x-1) &, & 1 < X < 2 \\ 0 & & otherwise \end{cases}$$

Find the mean and variance of x.

$$\mu = \int_{1}^{2} 2x (x - 1) \, dx = 2 \int_{1}^{2} (x^2 - x) \, dx = 2(\frac{x^3}{3} - \frac{x^2}{2}) \Big|_{1}^{2} = 2[(\frac{8}{3} - 2) - (\frac{1}{3} - \frac{1}{2})]$$
$$= 2(\frac{8 - 6}{3} - \frac{2 - 3}{6}) = 2(\frac{2}{3} + \frac{1}{6}) = \frac{5}{3}$$

$$E(X^{2}) = \int_{1}^{2} 2x^{2}(x-1) dx = 2 \int_{1}^{2} (x^{3} - x^{2}) dx = 2(\frac{x^{4}}{4} - \frac{x^{3}}{3})_{1} |^{2}$$
$$= 2[(4 - \frac{2}{8}) - (\frac{1}{4} - \frac{1}{3})] = 17/6$$

$$\sigma^{2} = E(x^{2}) - (E(x))^{2} = \frac{17}{6} - (\frac{5}{3})^{2} = 1/18$$

Ex 4.18 pg 129:

Let **X** be a random variable having the density function:

$$f(x) = \begin{cases} \frac{x^2}{3} & , & -1 < x < 2 \\ 0 & & otherwise \end{cases}$$

Find the variance of the random variable $\underline{g(x)} = 4x+3$.

 $V(g(x)) = V(4x+3) = 16 V(x) = 16[E(x^2)-(E(x))^2]$

$$E(x) = \int_{-1}^{2} X \frac{X^{2}}{3} dx = \frac{X^{4}}{12} |_{-1}|^{2} = \frac{16}{12} - \frac{1}{12} = \frac{15}{12} = \frac{5}{4}$$

$$E(x^{2}) =_{-1} \int_{-1}^{2} x^{2} (\frac{x^{2}}{3}) dx = \frac{x^{5}}{15} |_{-1}^{2} = \frac{32}{15} - \frac{(-1)}{15} = \frac{11}{5}$$

$$E(x^{2}) = E(x^{2}) - (E(x))^{2} - \frac{11}{15} - \frac{5}{15} - \frac{11}{15} = \frac{15}{15} - \frac{176 - 125}{15} = 0.637$$

$$V(x) = E(x^{2}) - (E(x))^{2} = \frac{14}{5} - (\frac{3}{4})^{2} = \frac{14}{5} - \frac{16}{16} = \frac{143 - 145}{80} = 0.6375$$

V(g(x)) = V(4x + 3) = 16V(x) + 0 = 16(0.6375) = 10.2

<u>4.3 Means and Variance of Linear Combinations of</u> <u>Random Variables (pg 128):</u>

The expected value of the sum or difference of two or more functions of a random variable **X** is the sum or difference of the expected values of the functions. That is

 $E(g(x) \pm h(x)) = E(g(x)) \pm E(h(x)) \tag{6}$

Ex4.19 pg 129 :

Let \mathbf{X} be a random variable with probability distribution as follows:

X	0	1	2	3
f(x)	1/3	1/2	0	1/6

Find the expected value of $y = (x-1)^2$.

$$E(y) = E(x-1)^{2} = E(x^{2} - 2x + 1) = E(x^{2}) - 2E(x) + 1$$

Х	0	1	2	3	\sum
f(x)	1/3	1/2	0	1/6	1
X f(x)	0	1/2	0	3/6	1
$X^2 f(x)$	0	1/2	0	9/6	2

E(y) = 2 - 2(1) + 1 = 1

Ex 4.20 pg 130:

Find the expected value for $g(x) = x^2+x-2$, where **X** has the density function:

$$f(x) = \begin{cases} 2(x-1) &, 1 < x < 2 \\ 0 & otherwise \end{cases}$$

$$E(x^{2}) = \int_{1}^{2} 2x^{2}(x-1)dx = 2\int_{1}^{2} (x^{3}-x^{2})dx = 2(\frac{x^{4}}{4} - \frac{x^{3}}{3})_{1}|^{2}$$
$$= 2[(4-\frac{8}{3}) - (\frac{1}{4} - \frac{1}{3})] = 2(\frac{12-8}{3} - \frac{3-4}{12}) = 2(\frac{4}{3} + \frac{1}{12}) = \frac{17}{6}$$

$$E(x^{2} + x - 2) = E(x^{2}) + E(x) - 2 = \frac{17}{6} + \frac{5}{3} - 2 = \frac{5}{2}$$

4.4 Chebyshev's Theorem (pg 135):

The probability that any random variable **X** will assume a value within **K** standard deviations of the mean μ_X is at least $(1-\frac{1}{K^2})$. That is:

$$P(\mu - K\sigma < X < \mu + K\sigma) \ge 1 - \frac{1}{K^2} \tag{7}$$

Ex (4.27 pg 137):

A random variable **X** has a mean $\mu = 8$, a variance $\sigma^2 = 9$ and an unknown probability distribution. Find:

(a) P(-4 < X < 20)

(b) $P(|X-8| \ge 6)$

 $(a) P(-4 < X < 20) = P[8 - (k)(3) < X < 8 + (k)(3)] \rightarrow$ $8-3k = -4 \rightarrow 8+4 = 3k \rightarrow 12 = 3k \rightarrow k = 4$ $P(-4 < X < 20) \ge 1 - \frac{1}{16} \rightarrow P(-4 < X < 20) \ge \frac{15}{16}$ $(b) P(|X - 8| \ge 6) = 1 - P(|x - 8| < 6) = 1 - P(-6 < (X - 8) < 6)$ =1-P(-6+8 < X < 6+8) = 1-P(2 < X < 14) $1 - P(2 < X < 14) \ge 1 - \frac{1}{L^2} \to 1 - 1 + \frac{1}{L^2} \ge P(2 < X < 14)$ $\rightarrow \frac{1}{L^2} \ge P(2 < X < 14) \rightarrow P(2 < X < 14) \le \frac{1}{L^2}$ $2=8-3K \rightarrow 3K = 8-2=6 \rightarrow K = 2$ or $14 = 8 + 3k \rightarrow 14 - 8 = 3K \rightarrow 6 = 3K \rightarrow K = 2$ $P(2 < x < 14) \leq \frac{1}{4}$