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Lecture Notes 

(3) Mathematical 

Expectation

( Book: Chapter 4 ,pg 111-137)



 Mean of a Random Variable: 

Definition: 

Let X be a random variable with probability distribution f(x). 

The mean or expected value of X is: 
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Properties of the Expectation: 

1. E (a) = a, where a is a constant 

2. E (a X) = a E (X) 

3. E (a X + b) = a E (X) + b 



Ex (1): 

Find the expected number of chemists on a committee of 3 

selected at random from 4 chemists and 3 biologists.  

Find: E (5), E (3x), E (2x-1) 



Solution: 

     Let X represent the number of chemists on the committee.  

    The probability distribution of X is given by: 
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 3 2 1 0 X 

1 4/35 18/35 12/35 1/35 f(x) 

60/35=1.71 12/35 36/35 12/35 0 x f(x) 

 

( ) ( ) 60/35 1.71XE X xf x     

(5) 5E   

(3 ) 3 ( ) 3(60/35) 5.143E x E x    

(2 1) 2 ( ) 1 2(60/35) 1 2.429E x E x       

See Ex 4.1 

pg 113



  Ex 4.3 pg114: 

      Let X be a random variable that denotes the life in hours of        

      a certain electronic device. The probability density function  

     is given by: 
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      Find the expected life of this type of device 



Solution: 
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EX 4.4 pg 115: 

Suppose that the number of cars X that pass through a car wash 

between 4 P.M. and 5 P.M. on any sunny Friday has the following 

probability distribution: 

9 8 7 6 5 4 X 

1/6 1/6 1/4 1/4 1/12 1/12 f(X) 

Let g(x) = 2 x-1 represent the amount of money in dollars, paid to 

the attendant by the manager. Find the attendant's expected earning 

for this particular time period.  



Solution: 

 9 8 7 6 5 4 X 

1 1/6 1/6 1/4 1/4 1/12 1/12 f(X) 

164/24 9/6 8/6 7/4 6/4 5/12 4/12 X f(x) 
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Ex (4.5 pg 115): 

Let X be a random variable with density function: 
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Find the expected value of g(x) = 4x+3 



                                Solution: 
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Variance: 

Definition: 

Let X be a random variable with probability distribution f(x) 

and mean  . The variance of X is denoted by V(x) or 2

X :  

2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ( )) (2)
x

V x E x x f x E X E X if x is discrete  


      

2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ( )) (3)V x E x x f x dx E X E X if x is continuous  
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Properties of the variance: 

1. 0)( aV   where a is a constant 

2. )()( 2 XVaaXV   

3. 0)()( 2  XVabaXV  

The Standard Deviation: 

The positive square root of the variance,   is called the 

standard deviation of X which is given by: 

2( ) ( )X XV x E x     



Ex (4.8 pg 120): 

The probability distribution for company A is given by: 

3 2 1 X 

0.3 0.4 0.3 f(x) 

and for company B is given by: 

Y 0 1 2 3 4 

f(y) 0.2 0.1 0.3 0.3 0.1 

   Show that the variance of the probability distribution for company B 

is greater than that of company A. 



Solution: 

 3 2 1 X 

1 0.3 0.4 0.3 f(x) 

2 0.9 0.8 0.3 x f(x) 

4.6 2.7 1.6 0.3 f(x) 2x 

          77.,6.046.4))(()( 222   xExE  



 4 3 2 1 0 Y 

1 0.1 0.3 0.3 0.1 0.2 f(y) 

2 0.4 0.9 0.6 0.1. 0 Y f(y) 

5.6 1.6 2.7 1.2 0.1 0 2y f(y) 

26.1,6.146.5))(()( 222   yEyE  

Note that 2
y is greater than 2

x . 



Ex (4.10 pg 121): 

The weekly demand for a drinking-water product, in thousands 

of liters from a local chain of efficiency stores having the 

probability density: 
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     Find the mean and variance of  x . 



Solution: 
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Ex 4.18 pg 129: 

Let X be a random variable having the density function: 
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Find the variance of the random variable g(x) = 4x+3. 



Solution: 

V (g(x)) =V (4x+3) =16 V(x) =16[E(x
2
)-(E(x))
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4.3  Means and Variance of Linear Combinations of 

Random Variables  (pg 128): 

The expected value of the sum or difference of two or more 

functions of a random variable X is the sum or difference of the 

expected values of the functions. That is 

)6())(())(())()(( xhExgExhxgE   



Ex4.19  pg 129 : 

Let X be a random variable with probability distribution as follows: 

X 0 1 2 3 

f(x) 1/3 1/2 0 1/6 

Find the expected value of 2)1(  xy . 



Solution: 

1)(2)()12()1()( 222  xExExxExEyE  

X 0 1 2 3   

f(x) 1/3 1/2 0 1/6 1 

X f(x) 0 1/2 0 3/6 1 

X
2
 f(x) 0 1/2 0 9/6 2 

11)1(22)( yE  

See ex 4.17 pg 

128



Ex 4.20 pg 130: 

Find the expected value for g(x) = x
2
+x-2, 

 where X has the density function: 
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4.4  Chebyshev's Theorem (pg 135): 

The probability that any random variable X will assume a value 

within K standard deviations of the mean
X  is at least (

2

1
1

K
 ). 

That is: 
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Ex (4.27 pg 137): 

  A random variable X has a mean 8 , a variance  

  92   and an unknown probability distribution. Find: 

(a) )204(  XP  
                          

(b) )6|8(| XP  



Solution: 

( ) ( 4 20) [8 ( )(3) 8 ( )(3)]

8 3 4 8 4 3 12 3 4

a P X P k X k

k k k k

        

         
 

1 15
( 4 20) 1 ( 4 20)

16 16
P X P X           

( ) (| 8 | 6) 1 (| 8 | 6) 1 ( 6 ( 8) 6)

1 ( 6 8 6 8) 1 (2 14)

b P X P x P X

P X P X
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