324 Stat
 Lecture Notes

(3) Mathematical Expectation

(Book: Chapter 4 ,pg III-I37)

Mean of a Random Variable:

Definition:

Let \mathbf{X} be a random variable with probability distribution $\mathbf{f}(\mathbf{x})$.
The mean or expected value of \mathbf{X} is:

$$
\begin{aligned}
& \mu=E(X)=\sum_{\forall X} X f(X) \quad \text { if } X \text { is discrete } \\
& \mu=E(X)=\int_{-\infty}^{\infty} X f(X) d X \quad \text { if } X \text { is continuous }
\end{aligned}
$$

Properties of the Expectation:

1. $E(a)=\mathbf{a}$, where \mathbf{a} is a constant
2. $E(a X)=a E(X)$
3. $E(a X+b)=a E(X)+b$

$\underline{E x(1):}$

Find the expected number of chemists on a committee of 3
selected at random from $\mathbf{4}$ chemists and $\mathbf{3}$ biologists.
Find: $\mathrm{E}(5), \mathrm{E}(3 \mathrm{x}), \mathrm{E}(2 \mathrm{x}-1)$

Solution:

Let \mathbf{X} represent the number of chemists on the committee.

The probability distribution of \mathbf{X} is given by:

$$
f(x)=\frac{\binom{4}{x}\binom{3}{3-x}}{\binom{7}{3}} \quad, \quad X=0,1,2,3
$$

$$
\begin{aligned}
& f(0)=\frac{\binom{4}{0}\binom{3}{3}}{\binom{7}{3}}=\frac{1}{35}, \quad f(1)=\frac{\binom{4}{1}\binom{3}{2}}{\binom{7}{3}}=\frac{12}{35}, \\
& f(2)=\frac{\binom{4}{2}}{\binom{3}{1}}=\frac{18}{35}, \quad f(3)=\frac{\binom{4}{3}\binom{3}{0}}{\binom{7}{3}}=\frac{4}{35}
\end{aligned}
$$

X	0	1	2	3	\sum
$\mathrm{f}(\mathrm{x})$	$1 / 35$	$12 / 35$	$18 / 35$	$4 / 35$	1
$\mathrm{xf}(\mathrm{x})$	0	$12 / 35$	$36 / 35$	$12 / 35$	$60 / 35=1.71$

$$
E(X)=\mu_{X}=\sum x f(x)=60 / 35=1.71
$$

$$
E(5)=5
$$

$$
E(3 x)=3 E(x)=3(60 / 35)=5.143
$$

$E(2 x-1)=2 E(x)-1=2(60 / 35)-1=2.429$

Ex 4.3 pg114:

Let \mathbf{X} be a random variable that denotes the life in hours of
a certain electronic device. The probability density function
is given by:

$$
f(x)=\left\{\begin{array}{ll}
\frac{20000}{X^{3}}, & X>100 \\
0 & \text { otherwise }
\end{array}\right\}
$$

Find the expected life of this type of device

Solution:

$$
\begin{aligned}
\mu & =E(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{100}^{\infty} X\left(\frac{20000}{X^{3}}\right) d X \\
& =\int_{100}^{\infty} \frac{2000}{X^{2}} d X=20000 \int_{100}^{\infty} X^{-2} d X \\
& =\left.20000\left(\frac{X^{-1}}{-1}\right)_{100}\right|^{\infty}=20000\left[(100)^{-1}-(\infty)^{-1}\right] \\
& =\frac{20000}{100}-\frac{20000}{\infty}=200-0=200
\end{aligned}
$$

EX 4.4 pg 115:

Suppose that the number of cars \mathbf{X} that pass through a car wash between 4 P.M. and 5 P.M. on any sunny Friday has the following probability distribution:

X	4	5	6	7	8	9
$\mathrm{f}(\mathrm{X})$	$1 / 12$	$1 / 12$	$1 / 4$	$1 / 4$	$1 / 6$	$1 / 6$

Let $g(x)=2 x-1$ represent the amount of money in dollars, paid to the attendant by the manager. Find the attendant's expected earning for this particular time period.

Solution:

X	4	5	6	7	8	9	\sum
$\mathrm{f}(\mathrm{X})$	$1 / 12$	$1 / 12$	$1 / 4$	$1 / 4$	$1 / 6$	$1 / 6$	1
$\mathrm{Xf}(\mathrm{x})$	$4 / 12$	$5 / 12$	$6 / 4$	$7 / 4$	$8 / 6$	$9 / 6$	$164 / 24$

$$
\begin{aligned}
E(g(x))=E(2 x-1) & =2 E(X)-1= \\
= & 2\left(\frac{164}{24}\right)-1=12.67
\end{aligned}
$$

Ex (4.5 pg 115):

Let \mathbf{X} be a random variable with density function:

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}}{3}, & -1<x<2 \\
0 & \text { otherwise }
\end{array}\right\}
$$

Find the expected value of $g(x)=4 x+3$

Solution:

$$
\begin{aligned}
E(X) & =\int_{-1}^{2} x\left(\frac{x^{2}}{3}\right) d x=\int_{-1}^{2}\left(\frac{x^{3}}{3}\right) d x=\left.\left(\frac{x^{4}}{12}\right)_{-1}\right|^{2} \\
& =\frac{1}{12}\left[2^{4}-(-1)^{4}\right]=\frac{1}{12}(16-1)=\frac{15}{12}
\end{aligned}
$$

$$
E(g(x))=E(4 x+3)=4 E(X)+3=4\left(\frac{15}{12}\right)+3=8
$$

Variance:

Definition:

Let \mathbf{X} be a random variable with probability distribution $\mathbf{f}(\mathbf{x})$ and mean μ. The variance of \mathbf{X} is denoted by $\mathrm{V}(\mathrm{x})$ or σ_{x}^{2} :
$V(x)=\sigma^{2}=E(x-\mu)^{2}=\sum_{\gamma_{x}}(x-\mu)^{2} f(x)=E\left(X^{2}\right)-(E(X))^{2}$ if x is discrete (2)
$V(x)=\sigma^{2}=E(x-\mu)^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=E\left(X^{2}\right)-(E(X))^{2}$ if x is continuous ($($ where:

$$
E\left(x^{2}\right)=\left\{\begin{array}{ll}
\sum x^{2} f(x) & \text { if } x \text { is discrete } \\
\int_{-\infty}^{\infty} x^{2} f(x) d x \text { if } x \text { is continuous }
\end{array}\right\}
$$

Properties of the variance:

1. $V(a)=0$ where \mathbf{a} is a constant
2. $V(a X)=a^{2} V(X)$
3. $\quad V(a X+b)=a^{2} V(X)+0$

The Standard Deviation:

The positive square root of the variance, σ is called the standard deviation of \mathbf{X} which is given by:

$$
\sigma_{x}=\sqrt{V(x)}=\sqrt{E\left(x-\mu_{x}\right)^{2}}
$$

Ex (4.8 pg 120):

The probability distribution for company \mathbf{A} is given by:

X	1	2	3
$f(x)$	0.3	0.4	0.3

and for company \mathbf{B} is given by:

Y	0	1	2	3	4
$\mathrm{f}(\mathrm{y})$	0.2	0.1	0.3	0.3	0.1

Show that the variance of the probability distribution for company B is greater than that of company \mathbf{A}.

Solution:

X	1	2	3	\sum
$\mathrm{f}(\mathrm{x})$	0.3	0.4	0.3	1
$\mathrm{x} f(\mathrm{x})$	0.3	0.8	0.9	2
$\mathrm{f}(\mathrm{x}) x^{2}$	0.3	1.6	2.7	4.6
$\sigma^{2}=E\left(x^{2}\right)-(E(x))^{2}=4.6-4=0.6, \sigma=.77$				

Y	0	1	2	3	4	\sum
$\mathrm{f}(\mathrm{y})$	0.2	0.1	0.3	0.3	0.1	1
$\mathrm{Y} \mathrm{f}(\mathrm{y})$	0	0.1.	0.6	0.9	0.4	2
$y^{2} \mathrm{f}(\mathrm{y})$	0	0.1	1.2	2.7	1.6	5.6
$\sigma^{2}=E\left(y^{2}\right)-(E(y))^{2}=5.6-4=1.6, \sigma=1.26$						

Note that σ_{y}^{2} is greater than σ_{x}^{2}.

Ex (4.10 pg 121):

The weekly demand for a drinking-water product, in thousands of liters from a local chain of efficiency stores having the probability density:

$$
f(x)=\left\{\begin{array}{ll}
2(x-1), & 1<X<2 \\
0 & \text { otherwise }
\end{array}\right\}
$$

Find the mean and variance of x.

Solution:

$$
\begin{aligned}
& \mu=\int_{1}^{2} 2 x(x-1) d x=2 \int_{1}^{2}\left(x^{2}-x\right) d x=\left.2\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}\right)\right|_{1} ^{2}=2\left[\left(\frac{8}{3}-2\right)-\left(\frac{1}{3}-\frac{1}{2}\right)\right] \\
& =2\left(\frac{8-6}{3}-\frac{2-3}{6}\right)=2\left(\frac{2}{3}+\frac{1}{6}\right)=\frac{5}{3} \\
& E\left(X^{2}\right)=\int_{1}^{2} 2 x^{2}(x-1) d x=2 \int_{1}^{2}\left(x^{3}-x^{2}\right) d x=\left.2\left(\frac{x^{4}}{4}-\frac{x^{3}}{3}\right)_{1}\right|^{2} \\
& =2\left[\left(4-\frac{2}{8}\right)-\left(\frac{1}{4}-\frac{1}{3}\right)\right]=17 / 6 \\
& \sigma^{2}=E\left(x^{2}\right)-(E(x))^{2}=\frac{17}{6}-\left(\frac{5}{3}\right)^{2}=1 / 18
\end{aligned}
$$

Ex 4.18 pg 129:

Let \mathbf{X} be a random variable having the density function:

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}}{3}, & -1<x<2 \\
0 & \text { otherwise }
\end{array}\right\}
$$

Solution:

$$
\begin{gathered}
\mathrm{V}(\mathrm{~g}(\mathrm{x}))=\mathrm{V}(4 \mathrm{x}+3)=16 \mathrm{~V}(\mathrm{x})=16\left[\mathrm{E}\left(\mathrm{x}^{2}\right)-(\mathrm{E}(\mathrm{x}))^{2}\right] \\
E(x)=\int_{-1}^{2} X \frac{X^{2}}{3} d x=\left.\frac{X^{4}}{12}\right|_{-1} ^{2}=\frac{16}{12}-\frac{1}{12}=\frac{15}{12}=\frac{5}{4} \\
E\left(x^{2}\right)=_{-1} \int^{2} x^{2}\left(\frac{x^{2}}{3}\right) d x=\left.\frac{x^{5}}{15}\right|_{-1} ^{2}=\frac{32}{15}-\frac{(-1)}{15}=\frac{11}{5} \\
V(x)=E\left(x^{2}\right)-(E(x))^{2}=\frac{11}{5}-\left(\frac{5}{4}\right)^{2}=\frac{11}{5}-\frac{25}{16}=\frac{176-125}{80}=0.6375 \\
V(g(x))=V(4 x+3)=16 V(x)+0=16(0.6375)=10.2
\end{gathered}
$$

4.3 Means and Variance of Linear Combinations of

Random Variables (pg 128):

The expected value of the sum or difference of two or more functions of a random variable \mathbf{X} is the sum or difference of the expected values of the functions. That is

$$
\begin{equation*}
E(g(x) \pm h(x))=E(g(x)) \pm E(h(x)) \tag{6}
\end{equation*}
$$

Ex4.19 pg 129:

Let \mathbf{X} be a random variable with probability distribution as follows:

X	0	1	2	3
$f(x)$	$1 / 3$	$1 / 2$	0	$1 / 6$

Find the expected value of $y=(x-1)^{2}$.

Solution:

$$
E(y)=E(x-1)^{2}=E\left(x^{2}-2 x+1\right)=E\left(x^{2}\right)-2 E(x)+1
$$

X	0	1	2	3	\sum
$\mathrm{f}(\mathrm{x})$	$1 / 3$	$1 / 2$	0	$1 / 6$	1
$\mathrm{Xf}(\mathrm{x})$	0	$1 / 2$	0	$3 / 6$	1
$\mathrm{X}^{2} \mathrm{f}(\mathrm{x})$	0	$1 / 2$	0	$9 / 6$	2

$$
E(y)=2-2(1)+1=1
$$

Ex $4.20 \mathrm{pg} \mathrm{130:}$

Find the expected value for $g(x)=x^{2}+x-2$, where \mathbf{X} has the density function:

$$
f(x)=\left\{\begin{array}{ll}
2(x-1) & , 1<x<2 \\
0 & \text { otherwise }
\end{array}\right\}
$$

Solution:

$$
\begin{aligned}
& E(x)=\int_{1}^{2} x 2(x-1) d x=2 \int_{1}^{2}\left(x^{2}-x\right) d x=\left.2\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}\right)_{1}\right|^{2}= \\
&=2\left(\frac{2}{3}+\frac{1}{6}\right)=\frac{5}{3} \\
& E\left(x^{2}\right)=\int_{1}^{2} 2 x^{2}(x-1) d x=2 \int_{1}^{2}\left(x^{3}-x^{2}\right) d x=\left.2\left(\frac{x^{4}}{4}-\frac{x^{3}}{3}\right)_{1}\right|^{2} \\
&=2\left[\left(4-\frac{8}{3}\right)-\left(\frac{1}{4}-\frac{1}{3}\right)\right]=2\left(\frac{12-8}{3}-\frac{3-4}{12}\right)=2\left(\frac{4}{3}+\frac{1}{12}\right)=\frac{17}{6} \\
& E\left(x^{2}+x-2\right)=E\left(x^{2}\right)+E(x)-2=\frac{17}{6}+\frac{5}{3}-2=\frac{5}{2}
\end{aligned}
$$

4.4 Chebyshev's Theorem (pg 135):

The probability that any random variable \mathbf{X} will assume a value within \mathbf{K} standard deviations of the mean μ_{x} is at least $\left(1-\frac{1}{K^{2}}\right)$.

That is:

$$
\begin{equation*}
P(\mu-K \sigma<X<\mu+K \sigma) \geq 1-\frac{1}{K^{2}} \tag{7}
\end{equation*}
$$

Ex (4.27 pg 137):

A random variable \mathbf{X} has a mean $\mu=8$, a variance $\sigma^{2}=9$ and an unknown probability distribution. Find:

$$
\text { (a) } P(-4<X<20)
$$

(b) $P(|X-8| \geq 6)$

Solution:

$$
\begin{aligned}
& \text { (a) } P(-4<X<20)=P[8-(k)(3)<X<8+(k)(3)] \rightarrow \\
& 8-3 k=-4 \rightarrow 8+4=3 k \rightarrow 12=3 k \rightarrow k=4
\end{aligned}
$$

$$
P(-4<X<20) \geq 1-\frac{1}{16} \rightarrow P(-4<X<20) \geq \frac{15}{16}
$$

(b) $P(|X-8| \geq 6)=1-P(|x-8|<6)=1-P(-6<(X-8)<6)$

$$
=1-P(-6+8<X<6+8)=1-P(2<X<14)
$$

$$
1-P(2<X<14) \geq 1-\frac{1}{k^{2}} \rightarrow 1-1+\frac{1}{k^{2}} \geq P(2<X<14)
$$

$$
\rightarrow \frac{1}{k^{2}} \geq P(2<X<14) \rightarrow P(2<X<14) \leq \frac{1}{k^{2}}
$$

$$
2=8-3 K \rightarrow 3 K=8-2=6 \rightarrow K=2 \text { or }
$$

$$
14=8+3 k \rightarrow 14-8=3 K \rightarrow 6=3 K \rightarrow K=2
$$

$$
P(2<x<14) \leq \frac{1}{4}
$$

