324 Stat
 Lecture Notes

(4) Some Discrete Probability Distributions
 (Book: Chapter 5 ,pg l43)

4.I Discrete Uniform

Distribution:

Discrete Uniform is not in the book, it should be studied from the notes

- If the random variable \mathbf{X} assume the values with equal probabilities, then the discrete uniform distribution is given by:

$$
\begin{array}{rlrl}
P(X, K) & =\frac{1}{K} \quad, & X=x_{1}, x_{2}, \ldots, x_{K} \\
& =0 & & \text { elsewhere } \tag{1}
\end{array}
$$

Theorem:

- The mean and variance of the discrete uniform distribution $P(X, K)$ are:

$$
\begin{equation*}
\mu=\frac{\sum_{i=1}^{K} X_{i}}{K} \quad, \quad \sigma^{2}=\frac{\sum_{i=1}^{K}(X-\mu)^{2}}{K} \tag{2}
\end{equation*}
$$

EX (I):

- When a die is tossed once, each element of the sample space $S=\{1,2,3,4,5,6\} \quad$ occurs with probability I/6. Therefore we have a uniform distribution with:

$$
P(X, 6)=\frac{1}{6}, X=1,2,3,4,5,6
$$

- Find:
- I. $P(1 \leq x<4)$
- 2. $P(x<3)$
- 3. $P(3<x<6)$

Solution:

- I. $P(1 \leq x<4)$

$$
=P(x=1)+P(x=2)+P(x=3)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}
$$

- 2. $P(x<3)=P(x=1)+P(x=2)=\frac{2}{6}$
-3. $P(3<x<6)=P(x=4)+P(x=5)=\frac{2}{6}$

EX (2):

- For example (I): Find μ and σ^{2}

Solution:

$$
\begin{aligned}
& \mu=\frac{\sum_{i=1}^{k} X_{i}}{k}=\frac{1+2+3+4+5+6}{6}=3.5 \\
& \sigma^{2}=\frac{\sum_{i=1}^{k}\left(X_{i}-\mu\right)^{2}}{k}
\end{aligned}
$$

$$
=\frac{(1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}}{6}=\frac{35}{12}
$$

The Bernoulli Process:

- Bernoulli trials are an experiment with:
I) Only two possible outcomes.

2) Labeled as success (S), failure (F).
3) Probability of success $=p$, probability of failure $=q=1-p \quad(p+q=1)$.

Binomial Distribution:

- *The Binomial trials must possess the following properties:
I) The experiment consists of \mathbf{n} repeated trials.

2) Each trial results in an outcome that may be classified as a success or a failure.
3) The probability of success denoted by \mathbf{p} remains constant from trial to trial.
4) The repeated trials are independent.
5) The parameters of binomial are n,p.

Binomial Distribution:

- The probability distribution of the binomial random variable \mathbf{X}, the number of successes in \mathbf{n} independent trials is:

$$
\begin{equation*}
b(x, n, p)=\binom{n}{x} p^{x} q^{n-X} \quad, \quad x=0,1,2, \ldots, n \tag{5}
\end{equation*}
$$

Theorem:

- The mean and the variance of the binomial distribution $\mathrm{b}(\mathrm{x}, \mathrm{n}, \mathrm{p})$ are:

$$
\mu=n p \quad \text { and } \quad \sigma^{2}=n p q
$$

EX (4):

- According to a survey by the Administrative Management society, I/3 of U.S. companies give employees four weeks of vacation after they have been with the company for $\mathbf{I} 5$ years. Find the probability that among 6 companies surveyed at random, the number that gives employees 4 weeks of vacation after $\mathbf{1 5}$ years of employment is:
a) anywhere from $\mathbf{2}$ to $\mathbf{5}$;
b) fewer than 3 ;
c) at most I;
d) at least 5;
e) greater than $\mathbf{2}$;
f) calculate μ and σ^{2}

Solution:

$$
\begin{aligned}
& n=6, p=1 / 3, q=2 / 3 \\
& \text { (a) } P(2 \leq x \leq 5)=P(x=2)+P(x=3)+P(x=4)+P(x=5)
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{6}{2}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{4}+\binom{6}{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{3}+\binom{6}{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{2}+\binom{6}{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{1} \\
& =\frac{240}{729}+\frac{160}{729}+\frac{60}{729}+\frac{12}{729}=\frac{472}{729}=0.647
\end{aligned}
$$

(b) $P(x<3)=P(x=0)+P(x=1)+P(x=2)$

$$
\begin{aligned}
& =\binom{6}{0}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{6}+\binom{6}{1}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)^{5}+\binom{6}{2}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{4} \\
& =\frac{64}{729}+\frac{192}{729}+\frac{240}{729}=\frac{496}{729}=0.68
\end{aligned}
$$

$$
\begin{aligned}
\text { (c) } P(x \leq 1) & =P(x=0)+p(x=1) \\
& =\binom{6}{0}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{6}+\binom{6}{1}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)^{5} \\
& =\frac{64}{729}+\frac{192}{729}=\frac{256}{729}=0.351 \\
\text { (d) } P(x \geq 5) & =P(x=5)+P(x=6) \\
& =\binom{6}{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{1}+\binom{6}{6}\left(\frac{1}{3}\right)^{6}\left(\frac{2}{3}\right)^{0} \\
& =\frac{12}{729}+\frac{1}{729}=\frac{13}{729}=0.018
\end{aligned}
$$

$$
\text { (e) } P(x>2)=1-P(x \leq 2)=P(x=0)+P(x=1)+P(x=2)
$$

$$
\begin{aligned}
& =1-\left\{\binom{6}{0}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{6}+\binom{6}{1}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)^{5}+\binom{6}{2}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{4}\right\} \\
& =1-\left\{\frac{64}{729}+\frac{192}{729}+\frac{240}{729}\right\}=1-\frac{496}{729}=\frac{233}{729}=0.319
\end{aligned}
$$

$$
\begin{aligned}
(f) \mu & =n p=(6)\left(\frac{1}{3}\right)=\frac{6}{3}=2 \\
\sigma^{2} & =n p q=(6)\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)=\frac{12}{9}=1.333
\end{aligned}
$$

EX (5):

- The probability that a person suffering from headache will obtain relief with a particular drug is $\mathbf{0 . 9}$. Three randomly selected sufferers from headache are given the drug. Find the probability that the number obtaining relief will be:
a) exactly zero;
b) at most one;
c) more than one;
d) two or fewer;
e) Calculate μ and σ^{2}

Solution:

$$
\begin{aligned}
& n=3, p=0.9, q=0.1 \\
& \text { (a) } P(X=0)=\binom{3}{0}(0.9)^{0}(0.1)^{3}=0.001
\end{aligned}
$$

$$
\text { (b) } P(x \leq 1)=P(x=0)+P(x=1)
$$

$$
\begin{aligned}
& =\binom{3}{0}(0.9)^{0}(0.1)^{3}+\binom{3}{1}(0.9)^{1}(0.1)^{2} \\
& =0.001+0.027=0.028
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
P(X> & >1)=1-p(x \leq 1)=1-[P(x=0)+P(x=1)] \\
& =1-\left[\binom{3}{0}(0.9)^{0}(0.1)^{3}+\binom{3}{1}(0.9)^{1}(0.1)^{2}\right. \\
& =1-(0.001+0.027)=1-0.028=0.972
\end{aligned}
$$

$$
(d) P(x \leq 2)=P(x=0)+P(x=1)+P(x=2)
$$

$$
=\binom{3}{0}(0.9)^{0}(0.1)^{3}+\binom{3}{1}(0.9)^{1}(0.1)^{2}+\binom{3}{2}(0.9)^{2}(0.1)^{1}
$$

$$
=0.001+0.027+0.243=0.271
$$

