
Chapter 5

 Advanced Encryption Standard
(AES) Cipher

The AES Cipher

• designed by Rijmen-Daemen in Belgium
• AES general structure :

• Block Size : 128 bit (plaintext)
• Key sizes : 128/192/256 bits (AES-128, AES-192, AES-256)

• An iterative rather than Feistel Cipher
• operates on entire data block in every round rather than feistel

operate on halves at a time.
• processes data as block of 4 columns of 4 bytes (4x4 Matrix)

• designed to be:
– resistant against known attacks
– speed and code compactness on many CPUs
– Byte Operations: Easy to implement in software.

AES
Encryption

Process

AES Structure

The cipher consists of N rounds, where the number of rounds depends on

the key length:

 10 rounds for a 16-byte key;

 12 rounds for a 24-byte key; and

 14 rounds for a 32-byte key.

The first N – 1 rounds consist of four distinct transformation functions:

SubBytes, ShiftRows, MixColumns, and AddRoundKey

The final round contains only 3 transformation, and there is a initial single

transformation (AddRoundKey) before the first round, which can be

considered Round 0.

Each transformation takes one or more 4 x 4 matrices as input and produces

a 4 x 4 matrix as output.

The output of each round is a 4 x 4 matrix, with the output of the final round

being the ciphertext.

Also, the key expansion function generates N + 1 round keys, each of which

is a distinct 4 x 4 matrix. Each round key serve as one of the inputs to the

AddRoundKey transformation in each round.

AES Transformation Functions

• Substitute Bytes

• Shift Rows

• Mix Columns

• Add Round Key

AES Encryption Round

Substitute Bytes Transformation

• Substitute each byte of state and replace it
by byte indexed by row (left 4-bits) & column
(right 4-bits).

• Use an S-box to perform a byte-by-byte
substitution of the block

Substitute Bytes

The Byte Substitution operates on each byte of state independently, with the input

byte used to index a row/col in the table to retrieve the substituted value.

Shift Rows Transformation

• a circular byte shift in each each
– 1st row is unchanged

– 2nd row does 1 byte circular shift to left

– 3rd row does 2 byte circular shift to left

– 4th row does 3 byte circular shift to left

• decrypt inverts using shifts to right (opposite direction).

• Spread 4 bytes of one column to all columns

Shift Rows

Mix Columns Transformation

• each column is processed separately

• each byte is replaced by a value dependent on
all 4 bytes in the column

• effectively a matrix multiplication in GF(28)
using prime poly m(x) =x8+x4+x3+x+1

MixColumns
The forward mix column transformation

Mix Columns Example

InvMixColumns
The inverse mix column transformation

Add Round Key Transformation
XOR state with 128-bits of the round key

inverse for decryption identical

since XOR own inverse, with reversed keys

designed to be as simple as possible and
requires other stages for complexity / security

Add Round Key

AES Key Expansion

takes 4 word 128-bit (16-byte) key and
expands into array of 44/52/60 32-bit words

start by copying key into first 4 words

then loop creating words that depend on
values in previous & 4 places back

in 3 of 4 cases just XOR these together

1st word in 4 has rotate + S-box + XOR round
constant on previous, before XOR 4th back

AES Key Expansion

The first block of the AES Key Expansion is shown. It shows each group of 4 bytes in the key being

assigned to the first 4 words, then the calculation of the next 4 words based on the values of the

previous 4 words, which is repeated enough times to create all the necessary subkey information.

Key Expansion Rationale

• designed to resist known attacks

• design criteria included
– knowing part key insufficient to find many more

– invertible transformation

– fast on wide range of CPU’s

– use round constants to break symmetry

– diffuse key bits into round keys

– enough non-linearity to hinder analysis

– simplicity of description

AES Example
Key Expansion

Plaintext: 0123456789abcdeffedcba9876543210
Key: 0f1571c947d9e8590cb7add6af7f6798

Ciphertext: ff0b844a0853bf7c6934ab4364148fb9

Table shows the expansion of the 16-byte key into 10 round keys.

As previously explained, this process is performed word by word,
with each four-byte word occupying one column of the word round
key matrix.

The left hand column shows the four round key words generated for
each round.

The right hand column shows the steps used to generate the auxiliary
word used in key expansion.

We begin, with the key itself serving as the round key for round 0.

AES Example
Encryption

Next, the progression of the state matrix through the AES encryption process.
The first column shows the value of the state matrix at the start of a round.
For the first row, the state matrix is just the matrix arrangement of the
plaintext.
The second, third, and fourth columns show the value of the state matrix for
that round after the SubBytes, ShiftRows, and MixColumns transformations,
respectively.
The fifth column shows the round key

The first column shows the value of the state matrix resulting from the
bitwise XOR of the state after the preceding MixColumns with the round key
for the preceding round.

AES Decryption

• AES decryption is not identical to encryption
since steps done in reverse (The sequence of
transformations for decryption differs from
that for encryption although the form of the
key schedules is the same).

• but can define an equivalent inverse cipher
with steps as for encryption
– but using inverses of each step

– with a different key schedule

• works since result is unchanged when
– swap byte substitution & shift rows

– swap mix columns & add (tweaked) round key

AES Decryption

