324 Stat
 Lecture Notes

(5) Some Continuous Probability Distributions
 (Book*: Chapter 6 ,pg171)

Probability\& Statistics for Engineers \& Scientists

By Walpole, Myers, Myers, Ye

5.1 Normal Distribution:

- The probability density function of the normal random variable \mathbf{X}, with mean μ and variance σ^{2} is given by:

$$
f\left(x, \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \Pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, \quad-\infty<x<\infty
$$

5.1.1 The Normal Curve has the Following Properties:

- The mode, which is the point on the horizontal axis where the curve is a maximum, occurs at $X=\mu$, (Mode $=$ Median = Mean).
- The curve is symmetric about a vertical axis through the mean μ.
- The total area under the curve and above the horizontal axis is equal to 1.

Definition: Standard Normal Distribution:

- The distribution of a normal random variable with mean zero and variance one is called a standard normal distribution denoted by $Z \approx N(0,1)$
- Areas under the Normal Curve:

$$
\begin{gathered}
X \approx N(\mu, \sigma) \\
Z=\frac{X-\mu}{\sigma} \approx N(0,1)
\end{gathered}
$$

- Using the standard normal tables to find the areas under the curve.

The pdf of $\mathrm{Z} \sim \mathrm{N}(0,1)$ is given by:

EX (1):

Using the tables of the standard normal distribution, find:
(a) $P(Z<2.11)$
(b) $P(Z>-1.33)$
(c) $P(Z=3)$
(d) $P(-1.2<Z<2.1)$

Solution:

(a) $P(Z<2.11)=0.9826$

(b) $P(Z>-1.33)=1-0.0918=0.9082$

$$
\begin{aligned}
& \text { (c) } P(Z=3)=0 \\
& \text { (d) } P(-1.2<Z<2.1)=0.9821-0.1151=0.867
\end{aligned}
$$

See Ex: 6.2, 6.3, pg 178-179

EX (6.2 pg 178):

Using the standard normal tables, find the area under the curve that lies:
A. to the right of $\mathrm{Z}=1.84$
B. to the left of $\mathrm{z}=2.51$
C. between $\mathrm{z}=-1.97$ and $\mathrm{z}=0.86$
A. at the point $z=-2.15$

Solution:

A. to the right of $\mathrm{Z}=1.84$

$$
P(Z>1.84)=1-0.9671=0.0329
$$

B. to the left of $\mathrm{z}=2.51$
$P(Z<2.51)=0.9940$

C. between $\mathrm{z}=-1.97$ and $\mathrm{z}=0.86$

$$
P(-1.97<Z<0.86)=0.8051-0.0244=0.7807
$$

D. at the point $\mathrm{z}=-2.15$

$$
P(Z=-2.15)=0
$$

EX ($6.4 \mathrm{pg} \mathrm{179):}$

Given a normal distribution with $\mu=50, \sigma=10$. Find the probability that \mathbf{X} assumes a value between 45 and 62.

Solution:

$$
\begin{aligned}
P(45<X<62) & =P\left(\frac{45-50}{10}<Z<\frac{62-50}{10}\right)=P(-0.5<Z<1.2) \\
& =0.8849-0.3085=0.5764
\end{aligned}
$$

EX(6.5 pg 180) :
Given a normal distribution with $\mu=300$, $\sigma=50$, find the probability that \mathbf{X} assumes a value greater than 362.
Solution:

$$
\begin{aligned}
P(X>362) & =P\left(Z>\frac{362-300}{50}\right)=P(Z>1.24) \\
& =1-0.8925=0.1075
\end{aligned}
$$

Applications of the Normal Distribution:

EX (1):

The reaction time of a driver to visual stimulus is normally distributed with a mean of 0.4 second and a standard deviation of 0.05 second.
(a) What is the probability that a reaction requires more than 0.5 second?
(b) What is the probability that a reaction requires between 0.4 and 0.5 second?
(c) Find mean and variance.

Solution:

$$
\mu_{X}=0.4, \sigma_{X}=0.05
$$

(a) What is the probability that a reaction requires more than $\mathbf{0 . 5}$ second?

$$
\text { (a) } P(X>0.5)=P\left(Z>\frac{0.5-0.4}{0.05}\right)=P(Z>2)
$$

(b) What is the probability that a reaction requires between 0.4 and 0.5 second?

$$
\text { (b) } \begin{aligned}
P(0.4<X<0.5) & =P\left(\frac{0.4-0.4}{0.05}<Z<\frac{0.5-0.4}{0.05}\right) \\
& =P(0<Z<2)=0.9772-0.5=0.4772
\end{aligned}
$$

(c) Find mean and variance.
(c) $\mu=0.4, \sigma^{2}=0.0025$

EX (2):

The line width of a tool used for semiconductor manufacturing is assumed to be normally distributed with a mean of 0.5 micrometer and a standard deviation of 0.05 micrometer.
(a) What is the probability that a line width is greater than 0.62 micrometer?
(b) What is the probability that a line width is between 0.47 and 0.63 micrometer?

Solution:

(a) What is the probability that a line width is greater than 0.62 micrometer?

$$
\mu_{x}=0.5, \quad \sigma_{x}=0.05
$$

$$
\text { (a) } P(x>0.62)=P\left(Z>\frac{0.62-0.5}{0.05}\right)=P(Z>2.4)
$$

$$
=1-0.9918=0.0082
$$

(b) What is the probability that a line width is between 0.47 and 0.63 micrometer?

$$
\text { (b) } \begin{aligned}
P(0.47<X<0.63) & =P\left(\frac{0.47-0.5}{0.05}<Z<\frac{0.63-0.5}{0.05}\right) \\
& =P(-0.6<Z<2.6)=0.9953-0.2743=0.721
\end{aligned}
$$

See Ex 6.7, 6.8 pg 182

Normal Approximation to the

Binomial(Reading):
Theorem:
If \mathbf{X} is a binomial random variable with mean $\mu=n p$ and variance $\sigma^{2}=n p q$, then the limiting form of the distribution of

$$
Z=\frac{X-n p}{\sqrt{n p q}} \text { as } n \rightarrow \infty
$$

is the standard normal distribution $N(0,1)$.

EX

The probability that a patient recovers from rare blood disease is $\mathbf{0 . 4}$. If $\mathbf{1 0 0}$ people are known to have contracted this disease, what is the probability that less than 30 survive?

Solution:

$$
\begin{aligned}
& n=100, \quad p=0.4, \quad q=0.6 \\
& \mu=n p=(100)(0.4)=40, \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(0.4)(0.6)}=4.899 \\
& P(X<30)=P\left(Z<\frac{30-40}{4.899}\right)=P(Z<-2.04)=0.0207
\end{aligned}
$$

EX (6.16, pg 192)

A multiple - choice quiz has 200 questions each with 4 possible answers of which only 1 is the correct answer. What is the probability that sheer guess - work yields from $\mathbf{2 5}$ to $\mathbf{3 0}$ correct answers for 80 of the $\mathbf{2 0 0}$ problems about which the student has no knowledge?

Solution:

$$
\begin{aligned}
& p=n p=(80)(0.25)=20 \\
& \sigma=\sqrt{n p q}=\sqrt{(80)(0.25)(0.75)}=3.873 \\
& P(25<X<30)=P\left(\frac{25-20}{3.873}<\mathrm{Z}<\frac{30-20}{3.873}\right)=P(1.29<\mathrm{Z}<2.58)=0.9951-0.9015=0.0936
\end{aligned}
$$

