Chapter 5: The Sampling Distributions of Sample Statistics:

Case 1: The Sampling Distribution of the Sample Mean \bar{X}

<u>Case 2:</u> The Sampling Distribution of the Difference between two Sample Means $\overline{X}_1 - \overline{X}_2$:

When $n \ge 30 \& \sigma_1^2$ and σ_2^2 are Known & Normal or Non-Normal distribution.

Then

$$\operatorname{Mean}(\bar{X}_1 - \bar{X}_2) = \mu_1 - \mu_2$$

$$\operatorname{Variance}(\bar{X}_1 - \bar{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

$$\operatorname{Standard\ error}(\bar{X}_1 - \bar{X}_2) = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

$$\bar{X}_1 - \bar{X}_2 \sim N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right)$$

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Case 3: The Sampling Distribution of the Sample Proportion \hat{p} :

When $n \ge 30$, np > 5, nq > 5 and $\hat{p} = \frac{X}{n}$.

Then

Mean
$$(\hat{p}) = p$$

Variance $(\hat{p}) = \frac{pq}{n}$
Standard error $(\hat{p}) = \sqrt{\frac{pq}{n}}$
 $\hat{p} \sim N\left(p, \frac{pq}{n}\right)$
 $Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \sim N(0,1)$

Case 4: The Sampling Distribution of Difference between two Sample Proportions $\hat{p}_1 - \hat{p}_2$:

When $n_1 \ge 30$, $n_2 \ge 30$, $n_1 p_1 > 5$, $n_1 q_1 > 5$, $n_2 p_2 > 5$, $n_2 q_2 > 5$ and $\hat{p}_1 = \frac{X_1}{n_1}$, $\hat{p}_2 = \frac{X_2}{n_2}$;

$$\hat{p}_1 - \hat{p}_2 = \frac{X_1}{n_1} - \frac{X_2}{n_2}.$$

Then

Mean
$$(\hat{p}_1 - \hat{p}_2) = p_1 - p_2$$

Variance $(\hat{p}_1 - \hat{p}_2) = \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}$

Standard deviation
$$(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$$

$$\hat{p}_1 - \hat{p}_2 \sim N\left(p_1 - p_2, \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}\right)$$

$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}} \sim N(0,1)$$

Chapter 6:

1. The Point Estimates for the Population Parameters:

	Population Parameter	Point Estimator
Mean	μ	\bar{X}
Variance	σ^2	S^2
Standard Deviation	σ	S
Proportion	p	\hat{p}
The Difference between two Means	$\mu_1 - \mu_2$	$ar{X}_1 - ar{X}_2$
The Difference between two Proportions	$p_{1} - p_{2}$	$\hat{p}_1 - \hat{p}_2$

2. The Confidence Intervals for the Population Parameters:

Case 1: The Confidence Interval for the Population Mean μ :

<u>Case 2:</u> The Confidence Interval for the Difference between two Population Means $\mu_1 - \mu_2$:

Case 3: The Confidence Interval for the Population Proportion *p*:

When $n \ge 30$, np > 5, nq > 5 and $\hat{p} = \frac{X}{n}$.

Then the $(1 - \alpha)100\%$ confidence interval for p is

$$\hat{p} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

<u>Case 4:</u> The Confidence Interval for the Difference between two Population Proportions $p_1 - p_2$:

When $n_1 \ge 30$, $n_2 \ge 30$, $n_1 p_1 > 5$, $n_1 q_1 > 5$, $n_2 p_2 > 5$, $n_2 q_2 > 5$ and $\hat{p}_1 = \frac{X_1}{n_1}$, $\hat{p}_2 = \frac{X_2}{n_2}$,

$$\hat{p}_1 - \hat{p}_2 = \frac{X_1}{n_1} - \frac{X_2}{n_2}.$$

Then the $(1-\alpha)100\%$ confidence interval for p_1-p_2 is

$$(\hat{p}_1 - \hat{p}_2) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$$

The General Formulas:

$$Z = \frac{value - mean}{standard\ error}$$

 $estimator \pm (reliability cofficient \times standard error)$

Where

Standard error = standard deviation

Estimator = Point estimate

Reliability coefficient = table value = $Z_{1-\frac{\alpha}{2}}$ or $t_{1-\frac{\alpha}{2}}$