Engineering Probability & Statistics (AGE 1150)

Chapter 5: Some Discrete Probability Distributions

Dr. Feras Fraige

Discrete Uniform Distribution

• If the discrete random variable X assumes the values $x_1, x_2, ..., x_k$ with equal probabilities, then X has the discrete uniform distribution given by:

$$f(x) = P(X = x) = f(x;k) = \begin{cases} \frac{1}{k}; x = x_1, x_2, \dots, x_k \\ 0; elsewhere \end{cases}$$

- Note:
- f(x)=f(x;k)=P(X=x)
- *k* is called the parameter of the distribution.

Example 5.2:

- Experiment: tossing a balanced die.
- Sample space: *S*={1,2,3,4,5,6}
- Each sample point of S occurs with the same probability 1/6.
- Let X= the number observed when tossing a balanced die.
- The probability distribution of X is:

$$f(x) = P(X = x) = f(x;6) = \begin{cases} \frac{1}{6} ; x = 1, 2, \dots, 6 \\ 0; elsewhere \end{cases}$$

Theorem 5.1:

• If the discrete random variable X has a discrete uniform distribution with parameter k, then the mean and the variance of X are:

$$E(X) = \mu = \frac{\sum_{i=1}^{k} x_i}{k}$$

$$Var(X) = \sigma^2 = \frac{\sum_{i=1}^{k} (x_i - \mu)^2}{k}$$

Example 5.3:

Find E(X) and Var(X) in Example 5.2.

$$E(X) = \mu = \frac{\sum_{i=1}^{k} x_i}{k} = \frac{1+2+3+4+5+6}{6} = 3.5$$

$$Var(X) = \sigma^2 = \frac{\sum_{i=1}^{k} (x_i - \mu)^2}{k} = \frac{\sum_{i=1}^{k} (x_i - 3.5)^2}{6}$$

$$= \frac{(1-3.5)^2 + (2-3.5)^2 + \dots + (6-3.5)^2}{6} = \frac{35}{12}$$

Binomial Distribution

Bernoulli Trial:

- Bernoulli trial is an experiment with only two possible outcomes.
- The two possible outcomes are labeled:

success (s) and failure (f)

- The probability of success is P(s)=p and the probability of failure is P(f)=q=1-p.
- Examples:
 - 1. Tossing a coin (success=H, failure=T, and p=P(H))
 - 2. Inspecting an item (success=defective, failure=non-defective, and p=P(defective))

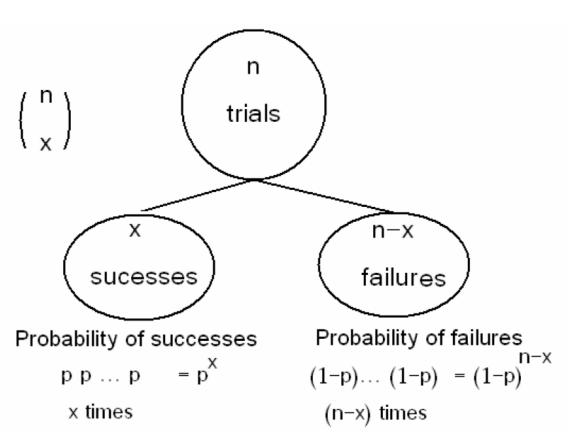
Bernoulli Process

- Bernoulli process is an experiment that must satisfy the following properties:
- 1. The experiment consists of *n* repeated Bernoulli trials.
- 2. The probability of success, P(s)=p, remains constant from trial to trial.
- 3. The repeated trials are independent; that is the outcome of one trial has no effect on the outcome of any other trial
- Binomial Random Variable:
- Consider the random variable :
- X = The number of successes in the n trials in a Bernoulli process
- The random variable X has a binomial distribution with parameters n (number of trials) and p (probability of success), and we write:

$$X \sim \text{Binomial}(n,p) \text{ or } X \sim b(x;n,p)$$

• The probability distribution of X is given by:

$$f(x) = P(X = x) = b(x; n, p) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}; & x = 0, 1, 2, ..., n \\ 0; & otherwise \end{cases}$$



• We can write the probability distribution of *X* as a table as follows

X	f(x)=P(X=x)=b(x;n,p)
0	$\binom{n}{0} p^{0} (1-p)^{n-0} = (1-p)^{n}$
1	$\binom{n}{1}p^1(1-p)^{n-1}$
2	$\binom{n}{2}p^2(1-p)^{n-2}$
:	:
n-1	$\binom{n}{n-1}p^{n-1}(1-p)^1$
n	$\binom{n}{n}p^n(1-p)^0=p^n$
Total	1.00

Example:

Suppose that 25% of the products of a manufacturing process are defective. Three items are selected at random, inspected, and classified as defective (D) or non-defective (N). Find the probability distribution of the number of defective items.

Solution:

- Experiment: selecting 3 items at random, inspected, and classified as (D) or (N).
- The sample space is
- *S*={DDD,DDN,DND,DNN,NDD,NDN,NND,NNN}
- Let X = the number of defective items in the sample
- We need to find the probability distribution of *X*.

(1) First Solution:

(1) I list Solution.			
Outcome	Probability	X	
NNN	$\frac{3}{3} \times \frac{3}{3} \times \frac{3}{3} = \frac{27}{3}$	0	
	$\frac{-4}{4} \times \frac{-4}{4} \times \frac{-4}{4} = \frac{-64}{64}$		
NND	$\frac{3}{-\times}$ $\frac{3}{\times}$ $\frac{1}{-}$ $\frac{9}{-}$	1	
	$\frac{-}{4} \stackrel{\wedge}{4} \stackrel{\wedge}{4} = \frac{-}{64}$		
NDN	$\frac{3}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{9}{4}$	1	
	$\frac{-}{4} \times \frac{-}{4} \times \frac{-}{4} = \frac{-}{64}$		
NDD	$\frac{3}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{3}{4}$	2	
	$\frac{-}{4} \times \frac{-}{4} \times \frac{-}{4} = \frac{-}{64}$		
DNN	$\frac{1}{4} \times \frac{3}{4} \times \frac{3}{4} = \frac{9}{64}$	1	
	$\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{64}$		
DND	$\frac{1}{-} \times \frac{3}{-} \times \frac{1}{-} = \frac{3}{-}$	2	
	$\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{64}$		
DDN	$\frac{1}{-} \times \frac{1}{-} \times \frac{3}{-} = \frac{3}{-}$	2	
	$\frac{-}{4} \stackrel{\wedge}{4} \stackrel{\wedge}{4} = \frac{-}{64}$		
DDD	$\frac{1}{-} \times \frac{1}{-} \times \frac{1}{-} = \frac{1}{-}$	3	
	$\frac{-}{4} \stackrel{\wedge}{4} \stackrel{\wedge}{4} = \frac{-}{64}$		

The probability distribution .of X is

.X	f(x)=P(X=x)
0	27
	64
1	9 9 9 27
	$\frac{-}{64} + \frac{+}{64} + \frac{+}{64} = \frac{-}{64}$
2	3 3 3 9
	64 64 64 64
3	1
	64

(2) Second Solution:

- Bernoulli trial is the process of inspecting the item. The results are success=D or failure=N, with probability of success P(s)=25/100=1/4=0.25.
- The experiments is a Bernoulli process with:
- number of trials: *n*=3
- Probability of success: p=1/4=0.25
- $X \sim \text{Binomial}(n,p) = \text{Binomial}(3,1/4)$
- The probability distribution of *X* is given by:

$$f(x) = P(X = x) = b(x; 3, \frac{1}{4}) = \begin{cases} \binom{3}{x} (\frac{1}{4})^x (\frac{3}{4})^{3-x}; & x = 0, 1, 2, 3 \\ 0; & otherwise \end{cases}$$

$$f(0) = P(X = 0) = b(0;3,\frac{1}{4}) = {3 \choose 0} (\frac{1}{4})^0 (\frac{3}{4})^3 = \frac{27}{64}$$

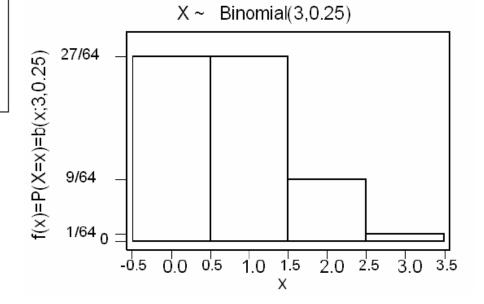
$$f(1) = P(X = 1) = b(1, 3, \frac{1}{4}) = {3 \choose 1} (\frac{1}{4})^1 (\frac{3}{4})^2 = \frac{27}{64}$$

$$f(2) = P(X = 2) = b(2;3,\frac{1}{4}) = {3 \choose 2} (\frac{1}{4})^2 (\frac{3}{4})^1 = \frac{9}{64}$$

$$f(3) = P(X = 3) = b(3, 3, \frac{1}{4}) = {3 \choose 3} (\frac{1}{4})^3 (\frac{3}{4})^0 = \frac{1}{64}$$

The probability distribution of X is

X	f(x)=P(X=x)
	=b(x;3,1/4)
0	27/64
1	27/64
2	9/64
3	1/64



• Theorem 5.2:

The mean and the variance of the binomial distribution b(x;n,p) are:

$$\mu = n p$$

$$\sigma^2 = n p (1 - p)$$

• Example:

In the previous example, find the expected value (mean) and the variance of the number of defective items.

- X = number of defective items
- We need to find $E(X)=\mu$ and $Var(X)=\sigma^2$
- We found that $X \sim \text{Binomial}(n,p) = \text{Binomial}(3,1/4)$
- .n=3 and p=1/4

The expected number of defective items is

•
$$E(X)=\mu = n p = (3) (1/4) = 3/4 = 0.75$$

The variance of the number of defective items is

•
$$Var(X)=\sigma^2 = n p (1-p) = (3) (1/4) (3/4) = 9/16 = 0.5625$$

Example:

In the previous example, find the following probabilities:

- (1) The probability of getting at least two defective items.
- (2) The probability of getting at most two defective items.

•
$$X \sim \text{Binomial}(3,1/4)$$

$$f(x) = P(X = x) = b(x;3,\frac{1}{4}) = \begin{cases} \binom{3}{x}(\frac{1}{4})^x(\frac{3}{4})^{3-x} & \text{for } x = 0,1,2,3 \\ 0 & \text{otherwise} \end{cases}$$

.X	f(x)=P(X=x)=b(x;3,1/4)
0	27/64
1	27/64
2	9/64
3	1/64

(1) The probability of getting at least two defective items:

$$P(X\ge2)=P(X=2)+P(X=3)=f(2)+f(3)=\frac{9}{64}+\frac{1}{64}=\frac{10}{64}$$

(2) The probability of getting at most two defective item:

$$P(X \le 2) = P(X=0) + P(X=1) + P(X=2)$$

$$= f(0) + f(1) + f(2) = \frac{27}{64} + \frac{27}{64} + \frac{9}{64} = \frac{63}{64}$$

or

$$P(X \le 2) = 1 - P(X > 2) = 1 - P(X = 3) = 1 - f(3) = 1 - \frac{1}{64} = \frac{63}{64}$$