Engineering Probability \& Statistics (AGE 1150)

Chapter 5: Some Discrete Probability Distributions

Dr. Feras Fraige

Discrete Uniform Distribution

- If the discrete random variable X assumes the values $x_{1}, x_{2}, \ldots, x_{k}$ with equal probabilities, then X has the discrete uniform distribution given by:

$$
f(x)=P(X=x)=f(x ; k)=\left\{\begin{array}{l}
\frac{1}{k} ; x=x_{1}, x_{2}, \cdots, x_{k} \\
0 ; \text { elsewhere }
\end{array}\right.
$$

- Note:
- $f(x)=f(x ; k)=P(X=x)$
- k is called the parameter of the distribution.

Example 5.2:

- Experiment: tossing a balanced die.
- Sample space: $S=\{1,2,3,4,5,6\}$
- Each sample point of S occurs with the same probability $1 / 6$.
- Let $X=$ the number observed when tossing a balanced die.
- The probability distribution of X is:

$$
f(x)=P(X=x)=f(x ; 6)=\left\{\begin{array}{l}
\frac{1}{6} ; x=1,2, \cdots, 6 \\
0 ; \text { elsewhere }
\end{array}\right.
$$

Theorem 5.1:

- If the discrete random variable X has a discrete uniform distribution with parameter k, then the mean and the variance of X are:

$$
\begin{gathered}
\mathrm{E}(\mathrm{X})=\mu=\frac{\sum_{i=1}^{k} x_{i}}{k} \\
\operatorname{Var}(\mathrm{X})=\sigma^{2}=\frac{\sum_{i=1}^{k}\left(x_{i}-\mu\right)^{2}}{k}
\end{gathered}
$$

Example 5.3:

Find $E(X)$ and $\operatorname{Var}(X)$ in Example 5.2.

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X})=\mu=\frac{\sum_{i=1}^{k} x_{i}}{k}=\frac{1+2+3+4+5+6}{6}=3.5 \\
& \begin{aligned}
\operatorname{Var}(\mathrm{X})=\sigma^{2} & =\frac{\sum_{i=1}^{k}\left(x_{i}-\mu\right)^{2}}{k}=\frac{\sum_{i=1}^{k}\left(x_{i}-3.5\right)^{2}}{6} \\
& =\frac{(1-3.5)^{2}+(2-3.5)^{2}+\cdots+(6-3.5)^{2}}{6}=\frac{35}{12}
\end{aligned}
\end{aligned}
$$

Binomial Distribution

- Bernoulli Trial:

- Bernoulli trial is an experiment with only two possible outcomes.
- The two possible outcomes are labeled:
success (s) and failure (f)
- The probability of success is $\mathrm{P}(s)=p$ and the probability of failure is $\mathrm{P}(f)=q=1-p$.
- Examples:
- 1. Tossing a coin (success $=\mathrm{H}$, failure $=\mathrm{T}$, and $p=\mathrm{P}(\mathrm{H})$)
- 2. Inspecting an item (success=defective, failure=non-defective, and $p=\mathrm{P}$ (defective))

Bernoulli Process

- Bernoulli process is an experiment that must satisfy the following properties:

1. The experiment consists of n repeated Bernoulli trials.
2. The probability of success, $\mathrm{P}(s)=p$, remains constant from trial to trial.
3. The repeated trials are independent; that is the outcome of one trial has no effect on the outcome of any other trial

- Binomial Random Variable:

- Consider the random variable :
- $X=$ The number of successes in the n trials in a Bernoulli process
- The random variable X has a binomial distribution with parameters n (number of trials) and p (probability of success), and we write:

$$
X \sim \operatorname{Binomial}(n, p) \text { or } X \sim \mathrm{~b}(\mathrm{x} ; n, p)
$$

- The probability distribution of X is given by:

$$
f(x)=P(X=x)=b(x ; n, p)=\left\{\begin{array}{l}
\binom{n}{x} p^{x}(1-p)^{n-x} ; x=0,1,2, \ldots, n \\
0 ;
\end{array} \quad\right. \text { otherwise }
$$

- We can write the probability distribution of X as a table as follows

x	$\mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})=\mathrm{b}(\mathrm{x} ; n, p)$
0	$\binom{n}{0} p^{0}(1-p)^{n-0}=(1-p)^{n}$
1	$\binom{n}{1} p^{1}(1-p)^{n-1}$
2	$\binom{n}{2} p^{2}(1-p)^{n-2}$
\vdots	\vdots
$n-1$	$\binom{n}{n-1} p^{n-1}(1-p)^{1}$
n	$\binom{n}{n} p^{n}(1-p)^{0}=p^{n}$
Total	1.00

Example:

Suppose that 25% of the products of a manufacturing process are defective. Three items are selected at random, inspected, and classified as defective (D) or non-defective (N). Find the probability distribution of the number of defective items.

Solution:

- Experiment: selecting 3 items at random, inspected, and classified as (D) or (N).
- The sample space is
$S=\{D D D, D D N, D N D, D N N, N D D, N D N, N N D, N N N\}$
- Let $X=$ the number of defective items in the sample
- We need to find the probability distribution of X.
(1) First Solution:

Outcome	Probability	x
NNN	$\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{27}{64}$	0
NND	$\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4}=\frac{9}{64}$	1
NDN	$\frac{3}{4} \times \frac{1}{4} \times \frac{3}{4}=\frac{9}{64}$	1
NDD	$\frac{3}{4} \times \frac{1}{4} \times \frac{1}{4}=\frac{3}{64}$	2
DNN	$\frac{1}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{9}{64}$	1
DND	$\frac{1}{4} \times \frac{3}{4} \times \frac{1}{4}=\frac{3}{64}$	2
DDN	$\frac{1}{4} \times \frac{1}{4} \times \frac{3}{4}=\frac{3}{64}$	2
DDD	$\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}=\frac{1}{64}$	3

The probability distribution

. x	$. \mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})$
0	$\frac{27}{64}$
1	$\frac{9}{64}+\frac{9}{64}+\frac{9}{64}=\frac{27}{64}$
2	$\frac{3}{64}+\frac{3}{64}+\frac{3}{64}=\frac{9}{64}$
3	$\frac{1}{64}$

(2) Second Solution:

- Bernoulli trial is the process of inspecting the item. The results are success=D or failure=N, with probability of success $P(s)=25 / 100=1 / 4=0.25$.
- The experiments is a Bernoulli process with:
- number of trials: $n=3$
- Probability of success: $p=1 / 4=0.25$
- $X \sim \operatorname{Binomial}(n, p)=\operatorname{Binomial}(3,1 / 4)$
- The probability distribution of X is given by:

$$
\begin{aligned}
& f(x)=P(X=x)=b\left(x ; 3, \frac{1}{4}\right)=\left\{\begin{array}{l}
\binom{3}{x}\left(\frac{1}{4}\right)^{x}\left(\frac{3}{4}\right)^{3-x} ; x=0,1,2,3 \\
0 ; \\
\text { otherwise }
\end{array}\right. \\
& f(0)=P(X=0)=b\left(0 ; 3, \frac{1}{4}\right)=\binom{3}{0}\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{3}=\frac{27}{64} \text { The probability } \\
& f(1)=P(X=1)=b\left(1 ; 3, \frac{1}{4}\right)=\binom{3}{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{2}=\frac{27}{64} \\
& f(2)=P(X=2)=b\left(2 ; 3, \frac{1}{4}\right)=\binom{3}{2}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{1}=\frac{9}{64} \\
& f(3)=P(X=3)=b\left(3 ; 3, \frac{1}{4}\right)=\binom{3}{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{0}=\frac{1}{64} \\
& \text { distribution of } X \text { is } \\
& X \sim \text { Binomial }(3,0.25)
\end{aligned}
$$

- Theorem 5.2:

The mean and the variance of the binomial distribution $b(x ; n, p)$ are:

$$
\begin{gathered}
\mu=n p \\
\sigma^{2}=n p(1-p)
\end{gathered}
$$

- Example:

In the previous example, find the expected value (mean) and the variance of the number of defective items.

- $X=$ number of defective items
- We need to find $\mathrm{E}(\mathrm{X})=\mu$ and $\operatorname{Var}(\mathrm{X})=\sigma^{2}$
- We found that $X \sim \operatorname{Binomial}(n, p)=\operatorname{Binomial}(3,1 / 4)$
- . $n=3$ and $p=1 / 4$

The expected number of defective items is

- $\mathrm{E}(\mathrm{X})=\mu=n p=(3)(1 / 4)=3 / 4=0.75$

The variance of the number of defective items is

- $\operatorname{Var}(\mathrm{X})=\sigma^{2}=n p(1-p)=(3)(1 / 4)(3 / 4)=9 / 16=0.5625$

Example:

In the previous example, find the following probabilities:
(1) The probability of getting at least two defective items.
(2) The probability of getting at most two defective items.

- $x \sim \operatorname{Binomial}(3,1 / 4)$

$$
f(x)=P(X=x)=b\left(x ; 3, \frac{1}{4}\right)=\left\{\begin{array}{l}
\left.\binom{3}{x}^{\frac{1}{4}}\right)^{x}\left(\frac{3}{4}\right)^{3-x} \text { for } x=0,1,2,3 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

. x	$\mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})=\mathrm{b}(\mathrm{x} ; 3,1 / 4)$
0	$27 / 64$
1	$27 / 64$
2	$9 / 64$
3	$1 / 64$

(1) The probability of getting at least two defective items:

$$
P(X \geq 2)=P(X=2)+P(X=3)=f(2)+f(3)=\frac{9}{64}+\frac{1}{64}=\frac{10}{64}
$$

(2) The probability of getting at most two defective item:

$$
\begin{aligned}
\mathrm{P}(\mathrm{X} \leq 2) & =\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2) \\
& =\mathrm{f}(0)+\mathrm{f}(1)+\mathrm{f}(2)=\frac{27}{64}+\frac{27}{64}+\frac{9}{64}=\frac{63}{64}
\end{aligned}
$$

or

$$
\mathrm{P}(\mathrm{X} \leq 2)=1-\mathrm{P}(\mathrm{X}>2)=1-\mathrm{P}(\mathrm{X}=3)=1-\mathrm{f}(3)=1-\frac{1}{64}=\frac{63}{64}
$$

