Testing for the two populations Proportions

If we have two independent samples of size and with proportions and respectively. Thus, we will use the following steps:

1-data needed: $x_{1}, \hat{p}_{1}=\frac{a_{1}}{n_{1}}$ and $x_{2}, \hat{p}_{2}=\frac{a_{2}}{n_{2}}$
2- the hypothesis: $\quad H_{0}: P_{1}=P_{2} \rightarrow P_{1}-P_{2}=0$

$$
H_{1}:\left\{\begin{array}{l}
P_{1}<P_{2} \rightarrow P_{1}-P_{2}<0 \\
P_{1}>P_{2} \rightarrow P_{1}-P_{2}>0 \\
P_{1} \neq P_{2} \rightarrow P_{1}-P_{2} \neq 0
\end{array}\right.
$$

3 - the statistic:

$$
Z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \text { where } \hat{p}=\frac{n_{1} \hat{p}_{1}+n_{2} \hat{p}_{1}}{n_{1}+n_{2}}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}
$$

4- Determining the rejection of H_{0}, that is:
i) if $H_{1}: P_{1}>P_{2} \rightarrow P_{1}-P_{2}>0$,reject H_{0} if $Z>Z_{1-\alpha}$
ii) if $H_{1}: P_{1}<P_{2} \rightarrow P_{1}-P_{2}$,reject H_{0} if $Z<-Z_{1-\alpha}$
iii) if $H_{1}: P_{1} \neq P_{2} \rightarrow P_{1}-P_{2} \neq 0$, reject H_{0} if $Z>Z_{1-\frac{\alpha}{z}}$ or $Z<\quad-Z \quad{ }_{1-(\alpha / 2)}$

$E x(9):$

Two machine A and B, a random sample of size 300 units from machine A with defective proportion 8% and another sample of size 200 units from machine B with defective proportion 4\%, The manager think that the defective proportion from machine A is differ from the defective proporion from machine B, is he right? use $a=0.05$

Solu.

1-data needed: $n_{1}=300, x_{1}=0.08$ and $n_{2}=200, x_{2}=0.04, \alpha=0.05$
2- the hypothesis: $\quad H_{0}: P_{1}=P_{2} \rightarrow P_{1}-P_{2}=0$

$$
H_{1}: P_{1} \neq P_{2} \rightarrow P_{1}-P_{2} \neq 0
$$

3 - the statistic:

$$
Z=\frac{0.08-0.04}{\sqrt{0.064(1-0.064)\left(\frac{1}{300}+\frac{1}{200}\right)}}=0.895
$$

$$
\text { where } \quad \hat{p}=\frac{n_{1} \hat{p}_{1}+n_{2} \hat{p}_{1}}{n_{1}+n_{2}}=\frac{300(0.08)+200(0.04)}{500}=0.064
$$

4- reject H_{0} if $Z<Z_{\frac{\alpha}{2}}=Z_{0.025}=-1.96$ or $\left.Z\right\rangle Z_{1-\frac{\alpha}{z}}=1.96$
Thus, we accept H_{0} and reject H_{1} that says there is a difference between the defective proportions from machines A and B.

