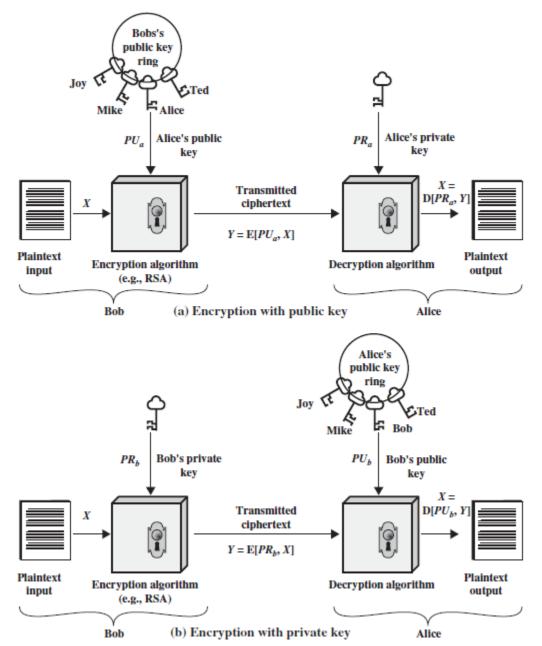
Chapter 9

Public Key Cryptography, RSA And Key Management


Private-Key Cryptography

- Traditional private / secret / single key cryptography uses one key
- Shared by both sender and receiver
- If this key is disclosed, communications are compromised
- > also is **symmetric**, parties are equal
- It does not protect sender from receiver forging a message & claiming is sent by sender

Public-Key Cryptography

- public-key/two-key/asymmetric cryptography involves the use of two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a related private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- is **asymmetric** because
 - those who encrypt messages or verify signatures cannot decrypt messages or create signatures

Public-Key Cryptography

Encryption with Public Key

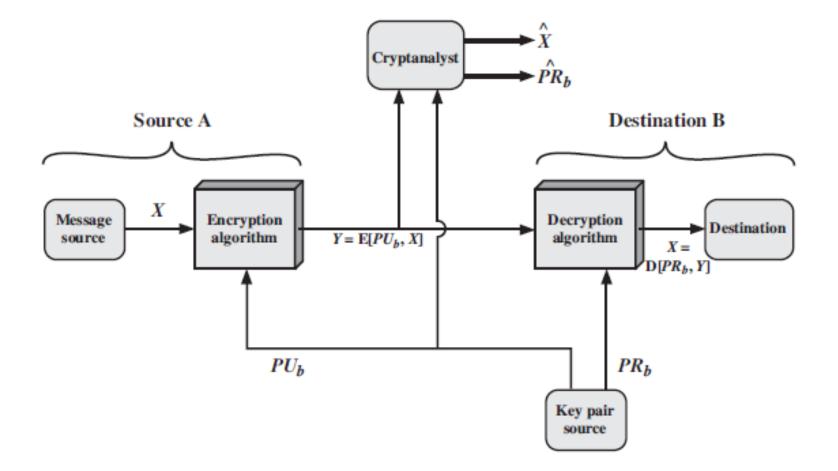
- 1. Each user generates a pair of keys to be used for the encryption and decryption of messages.
- Each user places one of the two keys in a public register or other accessible file (public key). The companion key is kept private. As shown in previous Figure (a) suggests, each user maintains a collection of public keys obtained from others.
- 3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using Alice's public key.
- 4. When Alice receives the message, she decrypts it using her private key. No other recipient can decrypt the message because only Alice knows Alice's private key.

Why Public-Key Cryptography?

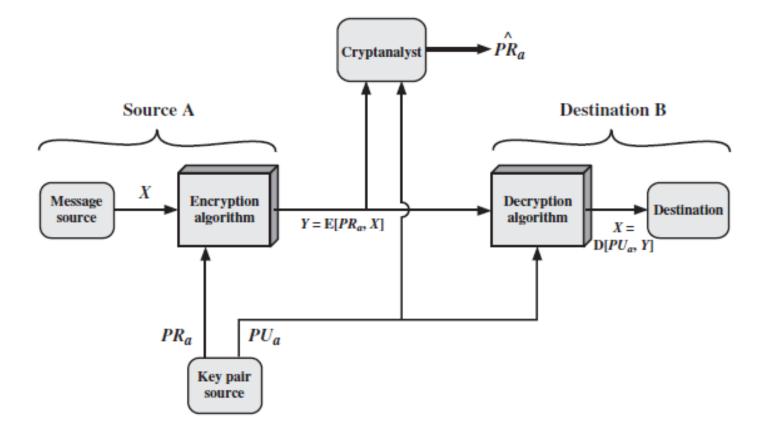
• Developed to address two key issues:

- Key distribution:

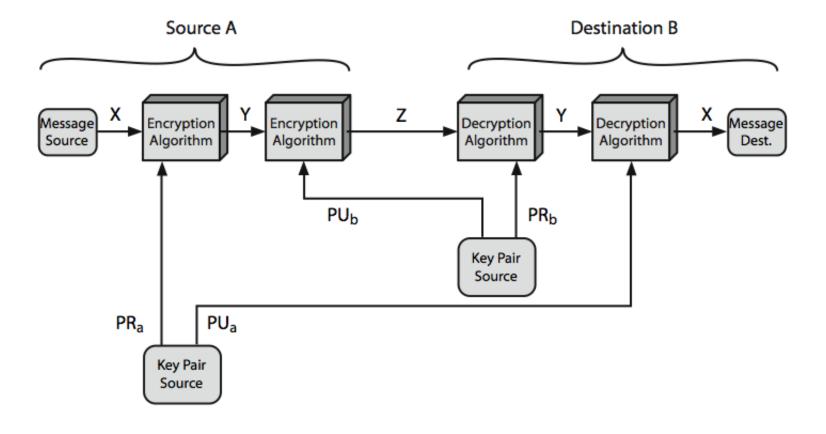
How to have secure communications in general.


- Digital signatures:

How to verify a message comes intact from the claimed sender


Symmetric vs Public-Key

Conventional Encryption	Public-Key Encryption	
Needed to Work:	Needed to Work:	
 The same algorithm with the same key is used for encryption and decryption. 	 One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption. 	
The sender and receiver must share the algorithm and the key.	The sender and receiver must each have one of the matched pair of keys (not the	
Needed for Security:	same one).	
 The key must be kept secret. 	Needed for Security:	
 It must be impossible or at least impractical to decipher a message if no 	1. One of the two keys must be kept secret.	
other information is available.	 It must be impossible or at least impractical to decipher a message if no 	
 Knowledge of the algorithm plus samples of ciphertext must be 	other information is available.	
insufficient to determine the key.	 Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key. 	


Public-Key Cryptosystem: Secrecy

Public-Key Cryptosystem: Authentication

Public-Key Cryptosystem : Authentication and Secrecy

 $Z = E(PU_b, E(PR_a, X))$ $X = D(PU_a, D(PR_b, Z))$

Public-Key Applications

- can classify uses into 3 categories:
 - encryption/decryption (provide secrecy)
 - digital signatures (provide authentication)
 - key exchange (of session keys)
- some algorithms are suitable for all uses, others are specific to one

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Security of Public Key Schemes

- like private key schemes brute force exhaustive search attack is always theoretically possible but keys used are too large (>512bits)
- security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems
- more generally the hard problem is known, but is made hard enough to be impractical to break
- requires the use of very large numbers
- > hence is **slow** compared to private key schemes