Chapter 9

Public Key Cryptography, RSA
 And Key Management

RSA

>by Rivest, Shamir \& Adleman of MIT in 1977

- The most widely used public-key cryptosystem is RSA. The difficulty of attacking RSA is based on the difficulty of finding the prime factors of a composite number.
- RSA is a block cipher in which the plaintext and ciphertext are integers between 0 and $n-1$ for some n. A typical size for n is 1024 bits

RSA Algorithm

Plaintext is encrypted in blocks and each block's binary value $2^{\mathrm{k}}<\mathrm{n}$

$$
\text { Block size } k<\log _{2}(n)
$$

Encryption (plaintext block M, Ciphertext C)

$$
\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{n} \quad, \text { where } 0 \leq \mathrm{M}<\mathrm{n}
$$

Decryption

$$
M=C^{d} \bmod n=\left(M^{e}\right)^{d} \bmod n=M^{\text {ed }} \bmod n
$$

Both sender and receiver know (n)

The sender knows (e)
Public key of PU $=\{e, n\}$

The receiver know (d)
Private key of $\mathrm{PR}=\{\mathrm{d}, \mathrm{n}\}$

For public-key requirements
Find values of e, d, n such that
$M^{\text {ed }} \bmod n=M$
for all $M<n$

Symbol	Expression	Meaning
gcd	$\operatorname{gcd}(i, j)$	Greatest common divisor; the largest positive integer that divides both i and j with no remainder on division.
φ	$\phi(n)$	The number of positive integers less than n and relatively prime to n. This is Euler's totient function.

RSA Key Setup

To find a relationship $M^{e d} \bmod n=M$
Each user generates a public/private key pair by:
Select two large primes at random: p, q n=p.q $\phi(n)$ is the Euler totient function

$$
\varnothing(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1) \quad \varnothing(\mathrm{pq})=(\mathrm{p}-1)(\mathrm{q}-1)
$$

Select at random the encryption key e

$$
\text { where } 1<e<\varnothing(n), \quad \operatorname{gcd}(e, \varnothing(n))=1
$$

Find decryption key d

$$
\begin{aligned}
e d & \equiv 1 \bmod \phi(n) \\
d & \equiv e^{-1} \bmod \phi(n)
\end{aligned}
$$

- publish their public encryption key: $\mathrm{PU}=\{\mathrm{e}, \mathrm{n}\}$
- keep secret private decryption key: $P R=\{d, n\}$
- The private key consists of $\{d, n\}$ and the public key consists of $\{e, n\}$. Suppose that user A has published its public key and that user B wishes to send the message M to A . Then B calculates $\mathrm{C}=\mathrm{M}^{e} \bmod \mathrm{n}$ and transmits C . On receipt of this ciphertext, user A decrypts by calculating $\mathrm{M}=\mathrm{C}^{d} \bmod \mathrm{n}$.

RSA Example - Key Setup

1. Select primes: $p=17$ \& $q=11$
2. Calculate $n=p q=17 \times 11=187$
3. Calculate $\quad \varnothing(n)=(p-1)(q-1)=16 \times 10=160$
4. Select e : $\operatorname{gcd}(e, 160)=1$; choose $e=7$
5. Determine d : $d e=1 \bmod 160$ and $d<160$ Value is $d=23$ since $23 \times 7=161=10 \times 16+1$
-repeat $d=(k \varphi(n)+1) / e$
-increment k until you get an integer value

$$
-1 \times 160+1=161 ; d=161 / 7=23
$$

6. Publish public key $\mathrm{PU}=\{7,187\}$
7. Keep secret private key $\operatorname{PR}=\{23,187\}$
$>$ sample RSA encryption/decryption is:
$>$ given message $\mathrm{M}=88$ (nb. $88<187$)
>encryption:

$$
C=88^{7} \bmod 187=11
$$

\rightarrow decryption:

$$
M=11^{23} \bmod 187=88
$$

$$
P U=\{7,187\} \quad P R=\{23,187\}
$$

$$
\text { Let } M=88
$$

Exponentiation in Modular Arithmetic

- We can use property of modular arithmetic $[(a \bmod n) \times(b \bmod n)] \bmod n=(a \times b) \bmod n$
- To calculate $x^{11} \bmod n$
$-x^{11}=x^{1+2+8}=(X)\left(X^{2}\right)\left(X^{8}\right)$
- compute $x \bmod n, x^{2} \bmod n, x^{4} \bmod n, X^{8} \bmod n$
- calculate $\left[(X \bmod n) \times\left(X^{2} \bmod n\right) \times\left(X^{8} \bmod n\right)\right] \bmod n$

Example

$88^{7} \bmod 187=\left[\left(88^{4} \bmod 187\right) \times\left(88^{2} \bmod 187\right) \times(881 \bmod 187)\right] \bmod 187$

$$
88^{1} \bmod 187=88
$$

$88^{4} \bmod 187=59,969,536 \bmod 187=132$
$88^{7} \bmod 187=(88 \times 77 \times 132) \bmod 187=894,432 \bmod 187=11$

Example

$11^{23} \bmod 187=\left[\left(11^{1} \bmod 187\right) \times\left(11^{2} \bmod 187\right) \times\left(11^{4} \bmod 18^{7}\right) \times\left(11^{8} \bmod 18^{7}\right)\right.$ $\left.\times\left(11^{8} \bmod 187\right)\right] \bmod 187$
$11^{1} \bmod 187=11$
$11^{2} \bmod 187=121$
$11^{4} \bmod 187=14,641 \bmod 187=55$
$11^{8} \bmod 187=214,358,881 \bmod 187=33$
$11^{23} \bmod 187=(11 \times 121 \times 55 \times 33 \times 33) \bmod 187=79,720,245 \bmod 187=88$

RSA Key Generation

- Before the application of the public-key cryptosystem, each participant must generate a pair of keys, which requires finding primes and computing inverses.
- users of RSA must:
- determine two primes at random p, q
- select either e or d and compute the other
- primes p, q must not be easily derived from modulus $n=p . q$
- means must be sufficiently large
- typically guess and use probabilistic test
- exponents e, d are inverses, so use Inverse algorithm to compute the other

Finding Inverses

- Can extend Euclid's algorithm:

EXTENDED EUCLID (m, b)

1. $(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3)=(1,0, m)$;
$(\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3)=(0,1, b)$
2. if $\mathrm{B} 3=0$
return $\mathrm{A} 3=\operatorname{gcd}(m, b)$; no inverse
3. if $\mathrm{B} 3=1$
return $B 3=\operatorname{gcd}(m, b) ; B 2=b^{-1} \bmod m$
4. $\mathrm{Q}=\mathrm{A} 3 \operatorname{div} \mathrm{~B} 3$
5. $(T 1, T 2, T 3)=(A 1-Q B 1, A 2-Q B 2, A 3-Q B 3)$
6. $(A 1, A 2, A 3)=(B 1, B 2, B 3)$
7. $(\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3)=(\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3)$
8. goto 2

Inverse of 550 in GF(1759)

\mathbf{Q}	A1	A2	A3	B1	B2	B3
-	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	-5	16	5	106	-339	4
1	106	-339	4	-111	355	1

Inverse of 7 in GF(160)

Q	A1	A2	A3	B1	B2	B3
-	1	0	160	0	1	7
(φ)			(e)			
22	0	1	7	1	-22	6
1	1	-22	6	-1	23 Inverse (d)	1 gcd

Factoring Problem

- mathematical approach takes 3 forms:
- $n=p . q$, hence $\varnothing(n)=(p-1)(q-1)$ and then d

$$
d \equiv e^{-1}(\bmod \phi(n))
$$

- determine $\varnothing(\mathrm{n})$ directly without $P \& q$ and compute d

$$
d \equiv e^{-1}(\bmod \phi(n))
$$

- find directly without \varnothing (n)

Key Management

- Public-key encryption helps address key distribution problems
- Have two aspects of this:
-distribution of public keys
-use of public-key encryption to distribute secret keys

Distribution of Public Keys

- Can be considered as using of:
- Public-key certificates

Public-Key Certificates

- Certificates allow key exchange without realtime access to public-key authority
- A certificate binds identity to public key - Usually with other info such as period of validity, rights of use etc
- With all contents signed by a trusted PublicKey or Certificate Authority (CA)
- Can be verified by anyone who knows the public-key authorities public-key

Public-Key Certificates

1. A sends a message to the public-key authority containing a request for the current public key of B.
2. The authority responds with a message that is encrypted using the authority's private key, $P R_{\text {auth }}$ Thus, A is able to decrypt the message using the authority's public key. Therefore, A is assured that the message originated with the authority. The message includes the following:

- B's public key, PUb which A can use to encrypt messages destined for B
- The original request, to enable A to match this response with the corresponding earlier request and to verify that the original request was not altered before reception by the authority

3. A stores B 's public key and also uses it to encrypt a message to B
4. B retrieves A's public key from the authority in the same manner as A retrieved B's public key. At this point, public keys have been securely delivered to A and B, and they may begin their protected exchange.

Public-Key Distribution of Secret Keys

- use previous methods to obtain public-key
- can use for secrecy or authentication
- but public-key algorithms are slow
- so usually want to use private-key encryption to protect message contents
- hence need a session key
- have several alternatives for negotiating a suitable session

Simple Secret Key Distribution

- proposed by Merkle in 1979
-A generates a new temporary public key pair
-A sends B the public key and their identity
-B generates a session key K sends it to A encrypted using the supplied public key
-A decrypts the session key and both use

Diffie-Hellman Key Exchange

- first public-key type scheme proposed
- by Diffie \& Hellman in 1976 along with the exposition of public key concepts
- note: now know that James Ellis (UK CESG) secretly proposed the concept in 1970
- is a practical method for public exchange of a secret key
- used in a number of commercial products

Diffie-Hellman Key Exchange

- a public-key distribution scheme
-cannot be used to exchange an arbitrary message
-rather it can establish a common key
-known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- security relies on the difficulty of computing discrete logarithms (similar to factoring) - hard

Diffie-Hellman Setup

- all users agree on global parameters:
-large prime integer or polynomial q
$-\alpha$ a primitive root mod q
- each user (eg. A) generates their key
-chooses a secret key (number): $X_{A}<q$
-compute their public key: $y_{A}=a^{X_{A}} \bmod q$
- each user makes public that key y_{A}

Diffie-Hellman Key Exchange

- shared session key for users $A \& B$ is $K A B$:

$$
\begin{aligned}
& K_{A B}=\alpha^{x_{A} \cdot x_{B}} \bmod q \\
& =Y_{A}{ }_{x_{B}} \bmod q \quad \text { (which } B \text { can compute) } \\
& =Y_{B}{ }^{{ }_{A}} \bmod q \quad \text { (which } A \text { can compute) }
\end{aligned}
$$

- K_{AB} is used as session key in private-key encryption scheme between Alice and Bob
- if Alice and Bob subsequently communicate, they will have the same key as before, unless they choose new public-keys
- attacker needs an x , must solve discrete log

Diffie-Hellman Example

- Users Alice \& Bob who wish to swap keys:
- Agree on prime $q=353$ and $\alpha=3$
- Select random secret keys:
- A chooses $x_{A}=97, B$ chooses $x_{B}=233$
- Compute public keys:
$-y_{A}=3^{97} \bmod 353=40$ (Alice)
$-y_{B}=3^{233} \bmod 353=248$ (Bob)
- Compute shared session key as:

$$
\begin{align*}
& \mathrm{K}_{\mathrm{AB}}=\mathrm{Y}_{\mathrm{B}}{ }^{\mathrm{x}_{\mathrm{A}}} \bmod 353=248^{97}=160 \tag{Alice}\\
& \mathrm{~K}_{\mathrm{AB}}=\mathrm{y}_{\mathrm{A}}^{\mathrm{x}_{\mathrm{B}}} \bmod 353=40^{233}=160
\end{align*}
$$

