Chapter 9

Public Key Cryptography, RSA And Key Management

RSA

- ➢ by Rivest, Shamir & Adleman of MIT in 1977
- ➤ The most widely used public-key cryptosystem is RSA. The difficulty of attacking RSA is based on the difficulty of finding the prime factors of a composite number.
- RSA is a block cipher in which the plaintext and ciphertext are integers between 0 and n - 1 for some n. A typical size for n is 1024 bits

RSA Algorithm

Plaintext is encrypted in blocks and each block's binary value $2^k < n$ Block size k < $\log_2(n)$

Encryption (plaintext block M, Ciphertext C)

 $C = M^e \mod n$, where $0 \le M \le n$

Decryption

$$M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$$

Both sender and receiver know (n) The sender knows (e) Public key of PU ={e, n} The receiver know (d) Private key of PR ={d, n}

For public-key requirements

Find values of *e*, *d*, *n* such that

M^{ed}mod n = M

for all M < n

Symbol	Expression	Meaning
gcd	gcd(i, j)	Greatest common divisor; the largest positive integer that divides both i and j with no remainder on division.
φ	$\phi(n)$	The number of positive integers less than <i>n</i> and relatively prime to <i>n</i> . This is Euler's totient function.

RSA Key Setup

To find a relationship $M^{ed} \mod n = M$ Each user generates a public/private key pair by: Select two large primes at random: p, q n=p.q $\phi(n)$ is the Euler totient function

 \emptyset (n) = (p-1) (q-1) \emptyset (pq) = (p-1) (q-1)

Select at random the encryption key e

where $1 \le \emptyset$ (n), gcd (e, \emptyset (n)) = 1

Find decryption key d $ed \equiv 1 \mod \phi(n)$

 $d \equiv e^{-1} \operatorname{mod} \phi(n)$

- publish their public encryption key: PU={e,n}
- keep secret private decryption key: PR={d,n}
- The private key consists of {d, n} and the public key consists of {e, n}.
 Suppose that user A has published its public key and that user B wishes to send the message M to A. Then B calculates C = M^e mod n and transmits C. On receipt of this ciphertext, user A decrypts by calculating M = C^d mod n.

RSA Example - Key Setup

- **1.** Select primes: p=17 & q=11
- **2.** Calculate $n = pq = 17 \times 11 = 187$
- 3. Calculate $\emptyset(n) = (p-1)(q-1) = 16 \times 10 = 160$
- **4.** Select e: gcd (e, 160) =1; choose e=7
- 5. Determine d: de=1 mod 160 and d < 160 Value is d=23 since 23x7=161= 10x16+1

-repeat $d = (k \varphi(n) + 1) / e$

-increment k until you get an integer value

-1 × 160 + 1 = 161; d = 161/7 = 23

- 6. Publish public key PU={7,187}
- **7.** Keep secret private key PR={23,187}

sample RSA encryption/decryption is:
given message M = 88 (nb. 88<187)
encryption:
C = 88⁷ mod 187 = 11
decryption:

 $M = 11^{23} \mod 187 = 88$

PU =
$$\{7, 187\}$$
 PR = $\{23, 187\}$
Let M = 88

Exponentiation in Modular Arithmetic

- We can use property of modular arithmetic
 [(a mod n) × (b mod n)] mod n = (a × b) mod n
- To calculate x¹¹ mod n

 $-x^{11} = x^{1+2+8} = (X)(X^2)(X^8)$

- compute x mod n, x^2 mod n, x^4 mod n, X^8 mod n
- calculate [(X mod n) × (X² mod n) × (X⁸ mod n)] mod n

Example

88⁷ mod 187 = [(88⁴ mod 187) × (88² mod 187) × (881 mod 187)] mod 187

88¹ mod 187 = 88

88² mod 187 = 7744 mod 187 = 77

88⁴ mod 187 = 59,969,536 mod 187 = 132

88⁷ mod 187 = (88 × 77 × 132) mod 187 = 894,432 mod 187 = 11

Example

 $11^{23} \mod 187 = [(11^1 \mod 187) \times (11^2 \mod 187) \times (11^4 \mod 18^7) \times (11^8 \mod 18^7) \times (11^8 \mod 187)] \mod 187$

11¹ mod 187 = 11 11² mod 187 = 121 11⁴ mod 187 = 14,641 mod 187 = 55 11⁸ mod 187 = 214,358,881 mod 187 = 33 11²³ mod 187=(11 × 121 × 55 × 33 × 33) mod 187=79,720,245 mod 187=88

RSA Key Generation

- Before the application of the public-key cryptosystem, each participant must generate a pair of keys, which requires finding primes and computing inverses.
- users of RSA must:
 - determine two primes at random p , q
 - select either e or d and compute the other
- primes p,q must not be easily derived from modulus n = p.q
 - means must be sufficiently large
 - typically guess and use probabilistic test
- exponents e, d are inverses, so use Inverse algorithm to compute the other

Finding Inverses

Can extend Euclid's algorithm:
 EXTENDED EUCLID (*m*, *b*)

1.
$$(A1, A2, A3) = (1, 0, m);$$

```
(B1, B2, B3) = (0, 1, b)
```

2. **if** B3 = 0

return A3 = gcd (*m*, *b*); no inverse

```
3. if B3 = 1
```

return B3 = gcd (*m*, *b*); $B2 = b^{-1} \mod m$

- 4. Q = A3 div B3
- 5. (T1, T2, T3) =(A1 Q B1, A2 Q B2, A3 Q B3)
- 6. (A1, A2, A3)=(B1, B2, B3)
- 7. (B1, B2, B3) =(T1, T2, T3)
- 8. **goto** 2

Inverse of 550 in GF(1759)

Q	A1	A2	A3	B1	B2	B3
	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	-5	16	5	106	-339	4
1	106	-339	4	-111	355	1

Inverse of 7 in GF(160)

Q	A1	A2	A3	B1	B2	B3
	1	0	160	0	1	7
			(φ)			(e)
22	0	1	7	1	-22	6
1	1	-22	6	-1	23	1
					Inverse	gcd
					(d)	

Factoring Problem

• mathematical approach takes 3 forms: - n= p.q, hence $\phi(n)=(p-1)(q-1)$ and then d $d \equiv e^{-1} \pmod{\phi(n)}$

- determine \emptyset (n) directly without P & q and compute d $d \equiv e^{-1} \pmod{\phi(n)}$

– find d directly without \emptyset (n)

Key Management

- Public-key encryption helps address key distribution problems
- Have two aspects of this:
 - -distribution of public keys
 - -use of public-key encryption to distribute secret keys

Distribution of Public Keys

- Can be considered as using of:
 - Public-key certificates

Public-Key Certificates

- Certificates allow key exchange without realtime access to public-key authority
- A certificate binds identity to public key

 Usually with other info such as period of validity, rights of use etc
- With all contents signed by a trusted Public-Key or Certificate Authority (CA)
- Can be verified by anyone who knows the public-key authorities public-key

Public-Key Certificates

- 1. A sends a message to the public-key authority containing a request for the current public key of B.
- 2. The authority responds with a message that is encrypted using the authority's private key, *PR_{auth}* Thus, A is able to decrypt the message using the authority's public key. Therefore, A is assured that the message originated with the authority. The message includes the following:
 - B's public key, *PUb* which A can use to encrypt messages destined for B
 - The original request, to enable A to match this response with the corresponding earlier request and to verify that the original request was not altered before reception by the authority
- 3. A stores B's public key and also uses it to encrypt a message to B
- 4. B retrieves A's public key from the authority in the same manner as A retrieved B's public key. At this point, public keys have been securely delivered to A and B, and they may begin their protected exchange.

Public-Key Distribution of Secret Keys

- use previous methods to obtain public-key
- can use for secrecy or authentication
- but public-key algorithms are slow
- so usually want to use private-key encryption to protect message contents
- hence need a session key
- have several alternatives for negotiating a suitable session

Simple Secret Key Distribution

- proposed by Merkle in 1979
 - -A generates a new temporary public key pair
 - -A sends B the public key and their identity
 - B generates a session key K sends it to A encrypted using the supplied public key
 - -A decrypts the session key and both use

Diffie-Hellman Key Exchange

- first public-key type scheme proposed
- by Diffie & Hellman in 1976 along with the exposition of public key concepts
 - note: now know that James Ellis (UK CESG) secretly proposed the concept in 1970
- is a practical method for public exchange of a secret key
- used in a number of commercial products

Diffie-Hellman Key Exchange

- a public-key distribution scheme
 - -cannot be used to exchange an arbitrary message
 - -rather it can establish a common key
 - -known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- security relies on the difficulty of computing discrete logarithms (similar to factoring) – hard

Diffie-Hellman Setup

- all users agree on global parameters:

 –large prime integer or polynomial q
 –α a primitive root mod q
- each user (eg. A) generates their key

 –chooses a secret key (number): X_A < q
 –compute their **public key:** y_A = α^{x_A} mod q
- each user makes public that key y_A

Diffie-Hellman Key Exchange

• shared session key for users A & B is KAB:

- K_{AB} is used as session key in private-key encryption scheme between Alice and Bob
- if Alice and Bob subsequently communicate, they will have the same key as before, unless they choose new public-keys
- attacker needs an x, must solve discrete log

Diffie-Hellman Example

- Users Alice & Bob who wish to swap keys:
- Agree on prime q=353 and α =3
- Select random secret keys:

- **A** chooses $x_A = 97$, **B** chooses $x_B = 233$

• Compute public keys:

$$-y_{B} = 3^{233} \mod 353 = 248$$
 (Bob)

• Compute shared session key as:

$$K_{AB} = y_B^{x_A} \mod 353 = 248^{97} = 160$$
 (Alice)
 $K_{AB} = y_A^{x_B} \mod 353 = 40^{233} = 160$ (Bob)