MOLECULAR DIFFUSION IN LIQUIDS

- For gases, $D_{AB} \neq f(c)$
- For liquid, $D_{AB} = f(c)$

1. Equimolar Counter Diffusion in Liquids

For this case,

$$N_A = -N_B$$

Therefore, the following equation,

$$N_A = -cD_{AB}\frac{d(x_A)}{dz} + \frac{c_A}{c}(N_A + N_B)$$

leads to,

$$N_A = -cD_{AB}\frac{d(x_A)}{dz} + 0$$
$$N_A = \frac{D_{AB}c_{av}(x_{A1} - x_{A2})}{(z_2 - z_1)} = \frac{D_{AB}(c_{A1} - c_{A2})}{(z_2 - z_1)}$$

where,

$$c_{av} = \left(\frac{\rho}{M}\right)_{av} = \left(\frac{\rho_1}{M_1} + \frac{\rho_2}{M_2}\right)/2$$

2. Diffusion of A through non-diffusing B in liquid phase

$$N_A = \frac{D_{AB}}{(z_2 - z_1)} \frac{P}{RT} \frac{p_{A1} - p_{A2}}{p_{BM}}$$

can be rewritten as,

$$N_{A} = \frac{D_{AB}}{(z_{2} - z_{1})} c_{av} \frac{x_{A1} - x_{A2}}{x_{BM}}$$
$$x_{BM} = \frac{x_{B2} - x_{B1}}{ln \frac{x_{B2}}{x_{B1}}}$$

For dilute solutions (small concentration of A), $x_{BM} \cong 1$. Therefore,

$$N_A = \frac{D_{AB}}{(z_2 - z_1)} (c_{A1} - c_{A2})$$

EXAMPLE 6.3-1. Diffusion of Ethanol (A) Through Water (B)

An ethanol (A)-water (B) solution in the form of a stagnant film 2.0 mm thick at 293 K is in contact at one surface with an organic solvent in which ethanol is soluble and water is insoluble. Hence, $N_B = 0$. At point 1 the concentration of ethanol is 16.8 wt % and the solution density is $\rho_1 = 972.8$ kg/m³. At point 2 the concentration of ethanol is 6.8 wt % and $\rho_2 = 988.1$ kg/m³ (P1). The diffusivity of ethanol is 0.740 × 10⁻⁹ m²/s (T2). Calculate the steady-state flux N_A .

Solution: The diffusivity is $D_{AB} = 0.740 \times 10^{-9} \text{ m}^2/\text{s}$. The molecular weights of A and B are $M_A = 46.05$ and $M_B = 18.02$. For a wt % of 6.8, the mole fraction of ethanol (A) is as follows when using 100 kg of solution.

$$x_{A2} = \frac{6.8/46.05}{6.8/46.05 + 93.2/18.02} = \frac{0.1477}{0.1477 + 5.17} = 0.0277$$

Then $x_{B2} = 1 - 0.0277 = 0.9723$. Calculating x_{A1} in a similar manner, $x_{A1} = 0.0732$ and $x_{B1} = 1 - 0.0732 = 0.9268$. To calculate the molecular weight M_2 at point 2.

$$M_2 = \frac{100 \text{ kg}}{(0.1477 + 5.17) \text{ kg mol}} = 18.75 \text{ kg/kg mol}$$

Similarly, $M_1 = 20.07$. From Eq. (6.3-2),

$$c_{\rm av} = \frac{\rho_1/M_1 + \rho_2/M_2}{2} = \frac{972.8/20.07 + 988.1/18.75}{2} = 50.6 \text{ kg mol/m}^3$$

To calculate x_{BM} from Eq. (6.3-4), we can use the linear mean since x_{B1} and x_{B2} are close to each other.

$$x_{BM} = \frac{x_{B1} + x_{B2}}{2} = \frac{0.9268 + 0.9723}{2} = 0.949$$

Substituting into Eq. (6.3-3) and solving,

$$N_A = \frac{D_{AB} c_{av}}{(z_2 - z_1) x_{BM}} (x_{A1} - x_{A2}) = \frac{(0.740 \times 10^{-9})(50.6)(0.0732 - 0.0277)}{(2/1000)0.949}$$

= 8.99 × 10⁻⁷ kg mol/s · m²

Diffusion Coefficients for Liquids

1. Experimental determination of liquid diffusivities

✓ $D_{AB} = f(c)$ ✓ $D_{AB} \neq D_{BA}$

Dilute solution and relatively concentrated solution are placed in chambers on opposite sides of a porous membrane of sintered glass.

Diffusion length = $K_1 \delta, K_1 > 1$

Another solute with known diffusivity is used to determine the diffusion length. Then,

$$N_A = \frac{\varepsilon D_{AB}}{K_1 \delta} (c - c')$$

 ε is the fraction of the open area for diffusion across the membrane. For V=V',

$$\ln \frac{(c_0 - c'_0)}{(c - c')} = \left(\frac{2\varepsilon A}{K_1 \delta V}\right) D_{AB} t$$

where, c_0 is the initial concentration. Another solute (e.g. KCl) with known diffusivity is used to determine the cell constant $\left(\frac{2\varepsilon A}{K_1\delta V}\right)$

2. Experimental liquid diffusivity data

Range $0.5 \times 10^{-9} - 5 \times 10^{-1}$	$\frac{m^2}{2}$
0	S

Solute	Solvent	Temperature		Diffusivity	
		°C	К	$[(m^2/s)10^5 \text{ or } (cm^2/s)10^5]$	Ref.
NH ₃	Water	12	285	1.64	(N2)
		15	288	1.77	. ,
0 ₂	Water	18	291	1.98	(N2)
-		25	298	2.41	(V1)
CO ₂	Water	25	298	2.00	(V1)
H ₂	Water	25	298	4.8	(V1)
Methyl alcohol	Water	15	288	1.26	(J1)
Ethyl alcohol	Water	10	283	0.84	(J1)
		25	298	1.24	(J1)
n-Propyl alcohol	Water	15	288	0.87	(J1)
Formic acid	 Water 	25	298	1.52	(B4)
Acetic acid	Water	9.7	282.7	0.769	(B4)
		25	298	1.26	(B4)
Propionic acid	Water	25	298	1.01	(B4)
HCl (9 g mol/liter)	Water	10	283	3.3	(N2)
(2.5 g mol/liter)		10	283	2.5	(N2)
Benzoic acid	Water	25	298	1.21	(C4)
Acetone	Water	25	298	1.28	(A2)
Acetic acid	Benzene	25	298	2.09	(C5)
Urea	Ethanol	12	285	0.54	(N2)
Water	Ethanol	25	298	1.13	(H4)
KCI	Water	25	298	1.870	(P2)
KCI	Ethylene glycol	25	298	0.119	(P2)

3. Prediction of Diffusivities in Liquids

For dilute solutes in liquids (Eq. 6.3-8 in C. J. Geankoplis):

$$D_{AB} = \frac{9.96 \times 10^{-16}}{V_A^{1/3}} (T) \left(\frac{1}{\mu}\right)$$

where, A is solute molecule present in low concentration in solvent B, D_{AB} is the diffusivity (m²/s), T is the absolute temperature (K), μ is the viscosity (Pa·s or kg/(m·s)) and V_A is the solute molar volume at its normal boiling point ($m^3/kg \ mol$). This equation give good predictions for very large un-hydrated and spherical-like solute molecules of molecular weight more than 1000 or where V_A> 0.5 $m^3/kg \ mol$ in aqueous solution.

For smaller solute molar volume, the Wilke-Chang correlation can be used (Eq. 6.3-9 in C. J. Geankoplis):

$$D_{AB} = 1.173 \times 10^{-16} (\varphi M_B)^{1/2} \left(\frac{T}{\mu_B V_A^{0.6}} \right)$$

where, A is solute molecule present in low concentration in solvent B, D_{AB} is the diffusivity (m²/s), T is the absolute temperature (K), μ is the viscosity (Pa·s or kg/(m·s)) and V_A (see Table 6.3-2) is the solute molar volume at its normal boiling point (m^3/kg mol). φ is an association parameter of the solvent.

Solvent	φ
Water	2.6
Methanol	1.9
Ethanol	1.5
Benzene	1.0
Ether	1.0
Heptane	1.0
Unassociated	1.0

Material	Atomic Volume (m ³ /kg mol) 10 ³	Material	Atomic Volume (m ³ /kg mol) 10 ³
С	14.8	Ring, 3-membered	6
Н	3.7	as in ethylene	
O (except as below)	7.4	oxide	
Doubly bound as	7.4	4-membered	- 8.5
carbonyl		5-membered	-11.5
Coupled to two		6-membered	-15
other elements		Naphthalene ring	- 30
In aldehydes, ketones	7.4	Anthracene ring	-47.5
In methyl esters	9.1	-	
In methyl ethers	9.9		
In ethyl esters	9.9		Molecular Volum
In ethyl ethers	9.9		$(m^3/kq mol) 10^3$
In higher esters	11.0		
In higher ethers	11.0	Air	29.9
In acids (—OH)	12.0	O ₂	25.6
Joined to S, P, N	8.3	N ₂	31.2
N	2	Br ₂	53.2
Doubly bonded	15.6	Cl ₂	48.4
In primary amines	10.5	CO	30.7
In secondary amines	12.0	CO ₂	34.0
Br	27.0	H ₂	14.3
Cl in RCHClR'	24.6	H ₂ O	18.8
Cl in RCl (terminal)	21.6	H ₂ S	32.9
F	8.7	NH ₃	25.8
I	37.0	NO	23.6
S	25.6	N ₂ O	36.4
Р	27.0	SO ₂	44.8

TABLE 6.3-2. Atomic and Molar Volumes at the Normal Boiling Point

Source: G. Le Bas, The Molecular Volumes of Liquid Chemical Compounds. New York: David McKay Co., Inc., 1915.

EXAMPLE 6.3-2. Prediction of Liquid Diffusivity

Predict the diffusion coefficient of acetone (CH₃COCH₃) in water at 25° and 50°C using the Wilke–Chang equation. The experimental value is 1.28×10^{-9} m²/s at 25°C (298 K).

Solution: From Appendix A.2 the viscosity of water at 25.0°C is $\mu_B = 0.8937 \times 10^{-3}$ Pa·s and at 50°C, 0.5494 × 10⁻³. From Table 6.3-2 for

 CH_3COCH_3 with 3 carbons + 6 hydrogens + 1 oxygen,

$$V_A = 3(0.0148) + 6(0.0037) + 1(0.0074) = 0.0740 \text{ m}^3/\text{kg mol}$$

For water the association parameter $\varphi = 2.6$ and $M_B = 18.02$ kg mass/kg mol. For 25°C, T = 298 K. Substituting into Eq. (6.3-9),

$$D_{AB} = (1.173 \times 10^{-16})(\varphi M_B)^{1/2} \frac{T}{\mu_B V_A^{0.6}}$$
$$= \frac{(1.173 \times 10^{-16})(2.6 \times 18.02)^{1/2}(298)}{(0.8937 \times 10^{-3})(0.0740)^{0.6}}$$
$$= 1.277 \times 10^{-9} \text{ m}^2/\text{s}$$

For 50°C or T = 323 K,

$$D_{AB} = \frac{(1.173 \times 10^{-16})(2.6 \times 18.02)^{1/2}(323)}{(0.5494 \times 10^{-3})(0.0740)^{0.6}}$$

$$= 2.251 \times 10^{-9} \text{ m}^2/\text{s}$$

Liquid Diffusivity Using Wilke-Chang Eq.			
Acetone ((CH3)2CO)-Water		Ethanol (C2H5OH)-Water	
Pressure	1	Pressure	1
т	298	т	298
M _B	18.02	M _B	18.02
φ	2.6	φ	2.6
μ	8.94E-04	μ	8.94E-04
Carbon	0.0148	Carbon	0.0148
Hydrogen	0.0037	Hydrogen	0.0037
Oxygen	0.0074	Oxygen	0.0074
V _A	0.074	V _A	0.0592
D _{AB} (Model)	1.277E-09	D _{AB} (Model)	1.4598E-09
D _{AB} (Exptl.)	1.28E-09	D _{AB} (Exptl.)	1.24E-09
Error(%)	0.24	Error(%)	17.73