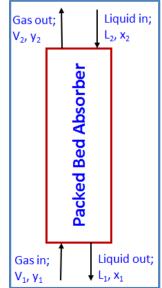


Question 2: (Marks: 20)

Inlet gas stream to a packed absorption tower (absorber) contains $y_1 = 0.03$ mole fraction ammonia (NH₃). The outlet gas stream contains $y_2 = 0.005$ at 293 K and 101.325 kPa. The inlet pure water flow is $L_2 = 60 \ kg \ mol/h$ and the total inlet gas flow is $V_1 = 50 \ kg \ mol/h$. The tower cross-sectional area 0.5 m². The film mass-transfer coefficients are


$k'_x a = 20 \times 10^{-2} \text{ kg mol/s} \cdot \text{m}^3 \cdot \text{mol frac}$ $k'_y a = 10 \times 10^{-2} \text{kg mol/s} \cdot \text{m}^3 \cdot \text{mol frac}$

The figure below shows the equilibrium and operating lines. Using the above figure and the given data, determine the following (Show clear calculations on Answer Sheet).

Evaluate $V_2(kg mol/h)$ $L_1(kg mol/h)$ $(x_i - x)_M$ $(y - y^{*})_{M}$ 48.74 0.00325 0.0089 61.26 HTU (H_L) NTU (N_L) Height (m) Min. Solvent, L'_{min} 0.168 6.312 1.06 33

• For the height calculation using analytical approach , determine

[А	N _{OG}	H _{OG}	Height (m)
	1.54	2.9	0.38	1.1

Given:	$V_1 = 50 \ kg \ mol/h; \ L_2 = 60 \ kg \ mol/h$
From figure:	$x_2 = 0.00; y_2 = 0.005; x_1 = 0.0205; y_1 = 0.030;$

$V' = V_1 \times (1 - y_1) = 50 \times (1 - 0.03) = 48.5$	$L' = L_2 \times (1 - x_2) = 60 \times (1 - 0.00) = 60$
$V_2 = V'/(1 - y_2) = 48.74$	$L_1 = L'/(1 - x_1) = 48.74$

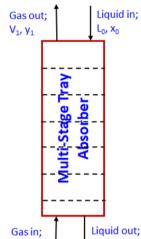
From figure:

Г

$x_{1i} = 0.0257;$ $y_{1i} = 0.0019$	$x_{2i} = 0.0018;$ y	$_{2i} = 0.002$
--------------------------------------	----------------------	-----------------

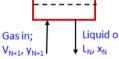
$(x_i - x)_M = \frac{(x_{1i} - x_1) - (x_{2i} - x_2)}{\ln[(x_{1i} - x_1)/(x_{2i} - x_2)]}$	$=\frac{(0.0257 - 0.0205) - (0.0019 - 0.00)}{\ln[(0.0257 - 0.0205)/(0.0019 - 0.00)]} = 0.00325$
$(y - y^*)_M = \frac{(y_1 - y_1^*) - (y_2 - y_2^*)}{\ln[(y_1 - y_1^*)/(y_2 - y_2^*)]}$	$=\frac{(0.030 - 0.0156) - (0.005 - 0.00)}{\ln[(0.030 - 0.0156)/(0.005 - 0.00)]} = 0.0089$

$H_L = \frac{L_{avg}}{k'_x aS}$	$= \left[\frac{(60+61.26)/2}{3600}\right] / [20 \times 10^{-2} \times 0.50] = 0.168 m$
$N_{L} = \left[\frac{(1-x)_{iM}}{(1-x)}\right]_{av} \frac{(x_{1}-x_{2})}{(x_{i}-x)_{M}}$	$= [1] \frac{0.0205 - 0.00}{0.00325} = 6.31$
$z = H_L \times N_L$	$= 0.168 \times 6.31 = 1.06 m$


<i>L'_{min}using</i> overall	$y_1 = 0.030; (x_1)_{max} = 0.0367 (From Equil. curve)$
material balance after	$V' = V_1(1 - y_1) = 50 \times (1 - 0.030) = 48.5 kg mol/h$
obtaining $(x_1)_{max}$ from the figure	$L'\frac{x_2}{(1-x_2)} + V'\frac{y_1}{(1-y_1)} = L'\frac{x_1}{(1-x_1)} + V'\frac{y_2}{(1-y_2)}$
and inguite	
	$\boldsymbol{L'_{\min}} \frac{x_2}{(1-x_2)} + V' \frac{y_1}{(1-y_1)} = \boldsymbol{L'_{\min}} \frac{x_{1_{\max}}}{(1-x_{1_{\max}})} + V' \frac{y_2}{(1-y_2)}$
	$L'_{min} = 33 \ kg \ mol/h$

$A_1 = \frac{L_1}{m_1 V_1}; \ A_2 = \frac{L_2}{m_2 V_2};$	$A_1 = \frac{61.26}{(6/8) \times 50} = 1.634; A_2 = \frac{60.0}{(3.4/4) \times 48.74} = 1.45$
$A = \sqrt{A_1 \times A_2}$	$A = \sqrt{1.634 \times 1.45} = 1.54$

$$N_{OG} = \frac{1}{(1-1/A)} ln \left[(1-1/A) \frac{y_1 - mx_2}{y_2 - mx_2} + \frac{1}{A} \right] = \frac{1}{(1-1/1.54)} ln \left[(1-1/1.54) \frac{0.03 - 0}{0.005 - 0} + \frac{1}{1.54} \right] = 2.9$$


$H_G = \frac{V_{av}}{k'_y aS}$	$= \left[\frac{(50+48.74)/2}{3600}\right] / [10 \times 10^{-2} \times 0.50] = 0.274 m$
$H_{OG} = H_G + (mV/L)H_L = H_G + H_L/A$	= 0.274 + 0.168/1.54 = 0.383 m
$z = H_{OG} \times N_{OG}$	$= 0.383 \times 2.9 = 1.1 m$

Question 3: (marks: 20)

A tray tower is to be designed to absorb SO₂ from an air stream by using water at 293 K and 101.3 kPa. The entering gas contains 20 mol % while the leaving air contains 2 mol% SO₂. The inert air flow rate is 4 kg mol air/h.m², and the entering recycled water contains 0.02 mol% SO₂. Assume that the tower operates at 293 K. The equilibrium data is given in the following figure.

- 1. Determine the minimum solvent required (L_{min})
- 2. Using 1.5 times the minimum liquid flow rate, determine the number of trays needed using graphical method in the figure below.
- 3. What is the composition of liquid and gas streams entering Stage 2?
- 4. How much SO_2 is removed in Stage 2?

Question 3 Solution:

Overall M.B.	$L' \frac{x_0}{(1-x_0)} + V' \frac{y_{N+1}}{(1-y_N)}$	$= L' \frac{x_N}{(1-x_N)} + V' \frac{y_1}{(1-y_1)}$
Overall M.B. for L'_{min}	$L'_{min}\frac{x_0}{(1-x_0)} + V'\frac{y_{N+1}}{(1-y_{N+1})} = L'_{min}\frac{(x_N)_{max}}{(1-(x_N)_{max})} + V'\frac{y_1}{(1-y_1)}$	
101 2 min	$\frac{L'_{min}}{(1-0.0002)} + 4\frac{0.2}{(1-0.2)}$	$\frac{0.0066}{(1-0.0066)} + 4\frac{0.02}{(1-0.02)}$
$L'_{min} = 142.55$ $L_{min} = 1.5 \times L'_{min} = 213$		
Overall M.B.	$L'\frac{x_0}{(1-x_0)} + V'\frac{y_{N+1}}{(1-y_{N+1})} = L'\frac{x_N}{(1-x_N)} + V'\frac{y_1}{(1-y_1)}$	
$213.78 \frac{0.0002}{(1-0.0002)} + 4 \frac{0.2}{(1-0.0002)}$		$\frac{2}{0.2)} = 213.78 \frac{x_N}{(1-x_N)} + 4 \frac{0.02}{(1-0.02)}$
$x_N = 0.00448; y_1 = 0.200$		$x_n = 0.001; y_{n+1} = 0.061$ $x_n = 0.002; y_{n+1} = 0.106$ $x_n = 0.003; y_{n+1} = 0.147$ Note: operating line is curved

From figure streams entering	$x_1 = 0.00084; y_1 = 0.020$
stage 3 are:	$x_2 = 0.00208; y_2 = 0.055$
$x_1 = 0.00084; y_1 = 0.108$	$x_3 = 0.00378; y_3 = 0.108$

Question 4: (marks: 20)

The solute A is being absorbed from a gas mixture of A and B in a wetted-wall tower with the liquid flowing as a film downward along the wall. At a certain point in the tower the bulk gas concentration $y_{AG} = 0.30$ mol fraction and the bulk liquid concentration is $x_{AL} = 0.15$. The tower is operating at 298 K and 101.3 kPa and the equilibrium data given in the figure. The solute A diffuses through stagnant Bin the gas phase and then through a non-diffusing liquid.

The equilibrium data is given in the figure below. Using correlations for dilute solutions in wetted-wall towers, the film mass-transfer coefficient for A in the gas phase is predicted as:

$$k'_y = 3.0 \times 10^{-3}$$
kg mol A/s · m² · mol frac

$$k'_x = 3.0 \times 10^{-3}$$
kg mol A/s · m² · mol frac

Determine the interface concentration (x_{Ai}, y_{Ai}) by making only one trial. For the first trial, use $y_{Ai} = 0.20$ and $x_{Ai} = 0.20$ to compute the slope. Then, calculate (show clear calculations on the answer sheet)

- Overall mass transfer coefficient K'_x
- Percent resistance in the gas and the liquid films •
- Flux N_A

Assume $(x_{Ai} = 0.2, y_{Ai} = 0.2)$, and compute the slope

$$(1 - x_A)_{iM} = \frac{(1 - x_{AL}) - (1 - x_{Ai})}{\ln[(1 - x_{AL})/(1 - x_{Ai})]} = \frac{(1 - 0.15) - (1 - 0.20)}{\ln[(1 - 0.15)/(1 - 0.20)]} = 0.825$$

$$(1 - y_A)_{iM} = \frac{(1 - y_{Ai}) - (1 - y_{AG})}{\ln[(1 - y_{Ai})/(1 - y_{AG})]} = \frac{(1 - 0.20) - (1 - 0.30)}{\ln[(1 - 0.20)/(1 - 0.30)]} = 0.749$$

$$-\frac{k_x}{k_y} = -\frac{\left[\frac{3.0 \times 10^{-3}}{0.825}\right]}{\left[\frac{3.0 \times 10^{-3}}{0.749}\right]} = -0.908$$

Using straight line equation,

$$y - y_0 = m(x - x_0)$$

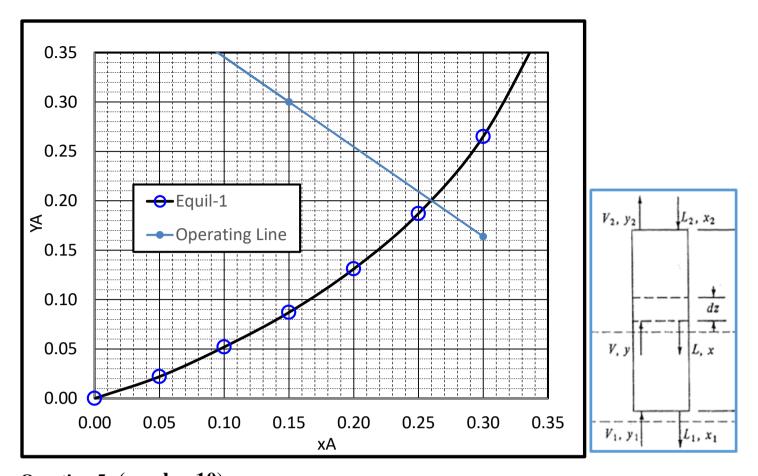
$$y - y_{AG} = -\frac{k_x}{k_y}(x - x_{AL})$$

$$y - 0.30 = -0.908(x - 0.15)$$

Choose any arbitrary value for x to get y. Choosing, x = 0.25 gives y = 0.30 - 0.0908 = 0.209. Now draw a straight line with points (0.15,0.30) and (0.25,0.21). Its intersection with the equilibrium line from the graph gives

$$(x_{Ai} = 0.26, y_{Ai} = 0.20)$$

$$\frac{1}{K_x} = \frac{1}{K'_x/(1-x_A)_{*M}} = \left(m''\frac{k'_y}{(1-y_A)_{iM}}\right)^{-1} + \left(\frac{k'_x}{(1-x_A)_{iM}}\right)^{-1}$$


$$[1 - x_A)_{*M} = \frac{(1 - x_{AL}) - (1 - x_A^*)}{\ln[(1 - x_{AL})/(1 - x_A^*)]} = 0.765$$

$$(1 - x_A)_{iM} = \frac{(1 - x_{AL}) - (1 - x_{Ai})}{\ln[(1 - x_{AL})/(1 - x_{Ai})]} = \frac{(1 - 0.15) - (1 - 0.26)}{\ln[(1 - 0.15)/(1 - 0.26)]} = 0.795$$

$$m'' = \frac{y_{AG} - y_{Ai}}{x_A^* - x_{Ai}} = \frac{0.30 - 0.20}{0.315 - 0.26} = 1.78$$

$$\frac{1}{K_x} = \frac{1}{K'_x / 0.765} = \left(1.78 \frac{0.003}{0.749}\right)^{-1} + \left(\frac{0.003}{0.795}\right)^{-1} = 140.3(35\%) + 265(65\%)$$
$$K_x = 2.41 \times 10^{-3} \text{ kg mol A/s} \cdot \text{m}^2 \cdot \text{mol frac}$$
$$K'_x = 1.84 \times 10^{-3} \text{ kg mol A/s} \cdot \text{m}^2 \cdot \text{mol frac}$$

 $N_A = k_y(y_{AG} - y_{Ai}) = (0.003/0.749) \times (0.30 - 0.20) = 4 \times 10^{-4} \text{ kg mol A/s} \cdot \text{m}^2 \cdot$

Question 5: (marks: 10) The gas stream from a chemical reactor contains 5 mol % acetone and the rest inert gases. The total gas flow is 5.0 kg mol/h to a PACKED BED ABSORBER of area 0.010 m² and height 2 m to remove acetone. At 293 K and 1.013×10^5 Pa pressure, recycled water with acetone concentration of 0.1 mol% ($x_2 = 0.001$) and a flowrate of 10 kg mol/h is used as the scrubbing liquid. The outlet gas concentration is to be 0.50 mol % acetone. The solvent (water) from the absorber contain 1.73 mol% acetone. The equilibrium relationship can be assumed to be $y_A = mx_A = 2.0x_A$.

Determine the experimental value of the mass transfer coefficients $(K'_{\nu}a)$ in kg mol/s \cdot m³ \cdot mol frac

Solution

 $x_1 = 0.0173; x_2 = 0.001; y_1 = 0.050; y_2 = 0.005;$

$$(y - y^*)_M = \frac{(y_1 - y_1^*) - (y_2 - y_2^*)}{\ln[(y_1 - y_1^*)/(y_2 - y_2^*)]}$$

 $y_1^* = mx_1 = 2 \times 0.0173 = 0.0346;$

 $y_2^* = mx_2 = 2 \times 0.001 = 0.0020;$

$$(y - y^*)_M = \frac{(0.05 - 0.0346) - (0.005 - 0.002)}{\ln[(0.05 - 0.0346)/(0.005 - 0.002)]} = 7.6 \times 10^{-3}$$

 $S = 0.010 m^2; z = 2 m$

$$\frac{V}{S}(y_1 - y_2) = K'_y a z (y - y^*)_M$$
$$\frac{0.288}{0.01 \times 3600} = K'_y a z (y - y^*)_M = K'_y a \times 2 \times 7.6 \times 10^{-3}$$
$$K'_y a = 52.65 \times 10^{-2} kg \text{ mol/s} \cdot m^3 \cdot \text{mol frac}$$