CLS 232 - Lecture 1

An Introduction to Biochemistry

Dr. Osama Al-Ghamdi
osalghamdi@ksu.edu.sa
What is Biochemistry?

- Biochemistry is the application of chemistry to the study of biological processes at the cellular and molecular level.

- It emerged as a distinct discipline around the beginning of the 20th century when scientists combined chemistry, physiology and biology to investigate the chemistry of living systems by:

 A. Studying the structure and behavior of the complex molecules found in biological material and

 B. How these molecules interact to form cells, tissues and whole organism
What is Biochemistry?

- Biochemistry = chemistry of life.

- Biochemists use physical and chemical principles to explain biology at the molecular level.

- Basic principles of biochemistry are common to all living organisms.

- Aim: to describe and explain, *in molecular terms*, all chemical processes of living cells
 - Structure-function
 - Metabolism and Regulation
 - How life began?
What is Biochemistry?

- Significance: be essential to all life sciences as the common knowledge
 - Genetics; Cell biology; Molecular biology
 - Physiology and Immunology
 - Pharmacology and Pharmacy
 - Toxicology; Pathology; Microbiology
 - Zoology and Botany
 - Agriculture
 - Industrial applications
 - Environmental implications
Life has 3 requirements:

(1) **ENERGY**: which it must know how to:

- Extract
- Transform
- Utilize

Glycolysis is the preferred pathway for the formation of **ATP**

\[
\text{Glucose} + 2 \text{ADP}^3- + 2 \text{P}_i^{2-} \rightarrow 2 \text{Pyruvate} + 2 \text{ATP}^4- + 2 \text{H}_2\text{O} + 4 \text{e}^- + 4 \text{H}^+
\]
(2) **SIMPLE MOLECULES**, which it must know how to:

- Convert
- Polymerize
- Degrade

(3) **CHEMICAL MECHANISMS**, to:

- Harness energy
- Drive sequential chemical reactions
- Synthesize & degrade macromolecules
- Maintain a dynamic steady state
- Self-assemble complex structures
- Replicate accurately & efficiently
- Maintain biochemical “order” vs outside
Organization of Life

• elements
• simple organic compounds (monomers)
• macromolecules (polymers)
• supramolecular structures
• organelles
• cells
• tissues
• organisms
Elements

- Make up all matter.
- 92 occur in nature.
- Identified by names or chemical symbols (abbreviations of modern or Latin names).
- Identified by number (based on structure of subunits or atoms).
- Described and organized in periodic table.
Atoms

- Subunits of elements.
- Smallest complete units of matter.
- Cannot be broken down or changed by ordinary chemical and physical means.
Atomic Structure

- **Nucleus**
 - Positively charged **protons**.
 - Neutrally charged **neutrons**.
 - Surrounded by negatively charged **electrons**.

www.bartleby.com
Molecules and Compounds

Molecules

- Formed when two or more atoms unite on the basis of their electron structures
- Can be made of like atoms or atoms of different elements

Compounds

- Composed of two or more elements
- Chemical bonds hold the atoms together in a molecule.
- There are 2 types of chemical bonds **IONIC** and **COVALENT**
Biomolecules as polymers

- Carbohydrates
- Proteins
- Lipids
- Nucleic acid

- Each of these types of molecules are **polymers** that are assembled from single units called **monomers**.

- Each type of macromolecule is an assemblage of a different type of monomer
Common theme:

Monomers form polymers through condensations

Polymers are broken down through hydrolysis.
Carbohydrates

monomer glucose
polymer cellulose
supramolecular structure cell wall

Glucose

Cellulose chains
Microfibrils
Cell walls
Plant cells
Cellulose microfibrils in plant cell wall
Proteins

monomer: amino acid
polymer: protein subunit
supramolecular structure: Enzyme complex
Lipids

- monomer: fatty acid
- polymer: phospholipid
- supramolecular structure: membrane

![Diagram of lipids and lipid bilayer structure]
Many Important Biomolecules are Polymers

- **Carbs**: glucose, cellulose, cell wall
- **Proteins**: amino acid, protein subunit, protein complex
- **Lipids**: fatty acid, phospholipid, membrane
- **Nucleic Acids**: nucleotide, DNA, chromosome
History and development of Biochemistry

1903, Neuberg (German): “Biochemistry”

“Chemistry of Life”
Two notable breakthroughs

(1) Discovery of the role of enzymes as catalysts

(2) Identification of nucleic acids as information molecules

Flow of information: from nucleic acids to proteins

DNA \rightarrow RNA \rightarrow Protein
• **1937**: *Krebs* won the Nobel Prize in Physiology or Medicine in 1953 for the discovery of the **Citric Acid Cycle**

• **1953**: *Watson & Crick* won the Nobel Prize in Physiology or Medicine in 1962 for the discovery of the **DNA Double Helix**
• In 1955, *Sanger* for the determination of insulin sequence- won the Nobel Prize in Physiology or Medicine in 1956

• In 1980, *Sanger & Gilbert* for first sequencing DNA- won the Nobel Prize in Chemistry in 1980

• In 1993, *Kary B. Mullis* for the invention of the PCR method - won the Nobel Prize in Chemistry in 1993
HGP from 1990, completed in 2003
Principle areas of Biochemistry

• Structure and function of cellular components
 (i.e.) proteins, carbohydrates, lipids, nucleic acids and other biomolecules

• Metabolism (catabolic and anabolic processes) and its regulation

• Molecular Genetics:
 - Gene expression and modulation
 - Regulation of protein synthesis
 - How life is replicated

DNA → RNA → Protein
Topics of this course

1. Acids, Bases, pH scale and buffers
2. Chemical bonds
3. Amino acids: structure and properties
4. Peptide bonds, proteins: types, structure, function
5. Enzymes
6. Vitamins and coenzymes
7. Carbohydrates: structure and properties
8. Nucleotides and nucleic acids
9. Fatty acids and lipids
10. Hormones
Material for this introductory lecture were derived from presentations by:

- **David Shintani**
 Department Chair and Full Professor in the Department of Biochemistry, University of Nevada, Reno

- **Zhihong Li**
 Associate Prof. & Director, Department of Biochemistry, China Three Gorges University