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ABSTRACT ARTICLE HISTORY

The aim of this article is to compute Greeks, i.e. price sensitivities Received 10 February 2015
in the framework of the Lévy LIBOR model. Two approaches are Accepted 1 September 2016
discussed. The first approach is based on the integration-by-parts KEYWORDS

formula, which lies at the core of the application of the Malliavin Lévy LIBOR model; fast
calculus to finance. The second approach consists of using Fourier- Fourier transform;

based methods for pricing derivatives. We illustrate the result by time-inhomogeneous Lévy
applying the formula to a caplet price where the jump part of the processes; Malliavin calculus;
driving process of the underlying model is given by a time-inho- Greeks and sensitivity
mogeneous Gamma process and alternatively by a Variance analysis

Gamma process.

1. Introduction

When a financial institution sells a derivative product to a customer, it is usually
interested to preserve the initial margin and consequently tries to avoid or at least to
reduce the market risk by hedging the position. In some cases, one can make use of a
static hedging strategy, that means hedge-and-forget. Unfortunately for most deriva-
tives, there is no static hedge, instead one has to hedge dynamically. For this, traders
need to know the exposure of their positions to changes of parameters which go into
the valuation formula, called the sensitivities or Greeks. Note that the possibility to
hedge a position is also crucial for the classical pricing approach via the cost of hedging.
From the mathematical point of view, Greeks are partial derivatives of the pricing
functional with respect to specific parameters. Traditionally, they are estimated by
means of a finite difference approximation. Two kinds of errors are produced this
way: one which comes from the approximation of the derivative by a finite difference
and another one which results from the numerical computation of the expectation
which represents the pricing functional. To eliminate the former source of error,
Fournié et al. (1999) adopted a new approach which allows to transform the differential
operator into a random weight. The result is an expectation operator applied to the
product of the pay-off function with a random weight function.
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In the context of equity models, this approach has been successfully used not only for
diffusion-driven approaches, but also for models which allow jumps. El-Khatib and
Privault (2004) study a model which is driven by a discontinuous process with Poisson
jump times and random jump sizes. Although European options do not satisfy the
regularity conditions required in their approach, they show that Asian options can be
considered due to the smoothing effect of the integral over time. Davis and Johansson
(2006) investigate a jump diffusion setting with a deterministic jump amplitude. An
additional separability assumption has to be imposed. Bayazit and Nolder (2013)
consider exponential Lévy models driven by Variance Gamma and by Normal Inverse
Gaussian Processes. They obtain approximations of various sensitivities after replacing
the underlying continuous time driving process by an approximating sequence of
random varijables.

A rather different approach to obtain sensitivities in exponential Lévy models
exploits the Fourier-based valuation formulas for derivatives. For a systematic investi-
gation under which conditions Fourier-based methods apply, see Eberlein, Glau, and
Papapantoleon (2010). This reference contains also a section where sensitivities are
derived. A more recent paper along these lines is De Olivera and Mordecki (2014). As
far as hedging issues in exponential Lévy models are concerned, we recommend the
review by Tankov (2011).

It is the purpose of the current paper to study sensitivities in a different area namely
for fixed income markets. We focus on the celebrated LIBOR market model (LMM). In
the framework of the classical diffusion version of the LMM as introduced by Brace,
Gatarek, and Musiela (1997) (see also Miltersen, Sandmann, and Sondermann (1997) as
well as Jamshidian (1997)), Glasserman and Zhao (1999) investigate the estimation of
option price sensitivities based on Monte Carlo simulation of the forward LIBOR rates.
In spite of the complexity of the LMM which is well above that of equity models, they
succeed to extract conditions under which the discrete time estimator gives unbiased
derivative estimates for the simulated process and also under which it converges to the
correct continuous time limit.

The diffusion-based LIBOR market model offers a high degree of analytical tract-
ability. However, due to the rigidity of the normal distribution, it has limitations as far
as its calibration to price data is concerned. Among other shortcomings, it cannot
reproduce the phenomenon of changing volatility smiles along the maturity axis. In
order to gain more flexibility in a first step, one can replace the driving Brownian
motion by a (time-homogeneous) Lévy process such as a generalized hyperbolic Lévy
process or a process from a suitable subclass. This improves the model performance
already considerably but the shape of the volatility surface produced by cap and floor
prices is typically too sophisticated in order to be matched sufficiently well by a model
which is driven by a time-homogeneous process. A more accurate calibration of the
model across different strikes and maturities and thus a reduction of model risk can be
achieved by using the larger class of time-inhomogeneous Lévy processes (see, e.g.,
Eberlein and Kluge (2005) and Eberlein and Ozkan (2005)). In practical applications, a
mild form of time-inhomogeneity turns out to be sufficient. Changing the process
parameters twice along the time axis produces already satisfactory results (Eberlein and
Kluge (2005)). This corresponds to choosing one Lévy parameter set for short matu-
rities, one for the middle range and another one for the long maturities.
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In order to take these aspects into account, we focus in the following on the computa-
tion of Greeks in the framework of the Lévy LIBOR model (LLM) which was introduced in
Eberlein and Ozkan (2005). Note also that time-inhomogeneity of the driving processes
develops naturally during the measure changes along the tenor structure. Therefore, one
does not give up simplifying structural properties by starting already with the wider class
of time-inhomogeneous processes. We discuss the computation of Greeks in both
approaches mentioned earlier which come from totally different mathematical fields.
The first approach is based on the integration-by-parts formula, which lies at the core of
the application of the Malliavin calculus to finance as developed in Fournié et al. (1999),
Leon et al. (2002), Petrou (2008) and Yablonski (2008). The second approach consists of
using Fourier-based methods for pricing derivatives. For a recent survey of Fourier-based
methods, see Eberlein (2014). We illustrate the result by applying the formulas to the
pricing of caplets where the jump part of the driving process of the underlying model is
given by a time-inhomogeneous Gamma process and alternatively by a Variance Gamma
process. For the ease of reading in an appendix, the relevant definitions and results of the
Malliavin calculus are presented on the level of generality which is required here.

2. The LLM

In the classical Heath-Jarrow—Morton theory, instantaneous forward rates represent the
basic quantity in interest rate term structure modelling. These rates are an infinitesimal
quantity given by

F(6.T) = — (L T), (1)

where B(t, T) is the price at time t € [0, T] of a default-free zero coupon bond which
matures at time T. f(¢,T) is however not observable in the market. What can be
observed instead are forward LIBOR rates L(t, T) which are the discretely compounded,
annualized interest rates which can be earned from investment during a future interval
starting at T and ending at T + & considered at the time point t< T

1/ B(t,T)
=3 (garre )

We recall that the forward price process for two maturities T and T + § is defined as

(2)

the quotient of the corresponding discount factors

B(t,T)
F(t, T, T +9) “BT10)

The LLM was developed by Eberlein and Ozkan (2005) following the seminal articles
on LIBOR market model driven by Brownian motion by Miltersen, Sandmann, and
Sondermann (1997) and Brace, Gatarek, and Musiela (1997). We repeat in this section
some facts as presented in Eberlein (2014). The model is developed via a backward
induction and driven by a time-inhomogeneous Lévy process L™ defined on a com-
plete stochastic basis (Q,F = Fr-,F,Pr.) where Py should be regarded as the
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forward martingale measure for the settlement date 7" and the filtration F =

(F f)te[O,T*] satisfies the usual conditions. LT" is given by

t t t
L = JbST*dS + JcédWST* + JJx(‘uT*—vT*)(ds, dx) (3)
0 0 0R

with characteristics
Bl = J bl'ds, C;= J cds, v (ds,dx) = FI" (dx)ds.
0 0

Here T* denotes the end point of a tenor structure 0 < T}, < ... < T, < T, =T*
where the corresponding contract runs from Ty to T, (W['),., is a Pr- standard
Brownian motion, u’ the random measure of jumps of LT and v!" is the P
compensator of ‘uT*. We assume § = Ty — Ty for 1 <k <n—1 to be independent
of k and the usual integrability assumptions.

Assumption 2.1. The drift term b € R, the volatility coefficients ¢, and the Lévy
measure F! satisfy

d0>0; Vse€[0,T"]: >0
and

-
J \bST*|+|cs}+J(|x|2A1)FST*(dx) ds<oo.
0 R

Assumption 2.2 (EM). There exists a constant M >1 such that

J exp(ux)F! (dx)<oo Yu e [-M,M], Vse[0,T].
Ix[>1

Two ingredients are needed for the LLM.

Assumption 2.3 (LR.1) For any maturity Ty there is a deterministic function
A(., Tx) = [0, T*]—R which represents the volatility of the forward LIBOR rate process
L(., Tx). These functions satisfy

o SUIA(s, Ty) < M Vs € [0, T*], for some M'< M, where M is the constant from
Assumption (EM),
o A(s, Tx)>0 forall s€ [0, Ty[ and A(s, Tx) =0 for s > Ty, for any maturity Tj.
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Assumption 2.4 (LR.2). The initial term structure B(0, Tx) for 1 < k < n is strictly
positive and strictly decreasing in k.

The backward induction starts by setting the most distant LIBOR rate L(t,T,—;)
under the forward martingale measure Py as

t
L(t, Ty—1) = L(0, Ty—1) exp <J A(s, T,,l)dLsT*>. (4)
0
Expressed as a differential we get the Pr- dynamics
dL(t, T, 1) = L(t—, T,_1) (C%A(t, T, 1)dW]l + J(eMt’Tnl)x — 1) =v"")(dt, dx)
S |
+ (A(t, T, )bl + Ect)tz(t, T,,l))dt

+ J(eij“) — 1 — xA(t, Tn,l))vT* (dt, dx)).
R

One forces this process to become a Pr« martingale by choosing b” such that

t t
J As, Tn_l)bsT*ds = —%J cA* (s, T,y )ds

0 0
t
- JJ(eM(S’T“) —1—xA(s, Tn,l))vT* (ds, dx). (5)
oR
Define
(SL(t_v Tnfl)
— T, ) = ’
= To) = 3 SL(t—, T,
06(1', Tn—l) = €(t—, Tn_l))t(t, Tn—l)
and

ﬁ(ta X, Tnfl) = €(t_7 Tnfl) (ex)t(t’Tnil) - 1) + 1.

Then the forward process F(., T,—1, T*) is given as a stochastic exponential

F(t,Ty—1,T") = F(0, Ty—1, T")E(Z)

with
t

t
Zy = Jcéoc(s, T, )dW!I + Jj(ﬁ(s,x, Tp1) — 1) (u" —vT)(ds, dx),
0 oR
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and is consequently a P+ martingale. We use this forward process as a density process

and define the forward measure Pr,_, by setting
dPr, ,  F(Thr, Thr, T7)
dPr. F(0,T,—1,T%)

=&r, (2).

By the semimartingale version of Girsanov’s theorem (see Jacod and Shiryaev (1987))

t 1
0

is a Py, , standard Brownian motion and

vIei(dt, dx) = B(t, x, Tp_y)v! (dt, dx)

is the Py, compensator of u’. We take Pr,_ as the new underlying probability
measure and define L(¢, T),_,) in the same way as L(t, T,,—;) defined in Equation (4).
Continuing this way one gets forward LIBOR rates L(t, Ti) and forward measures Pr,
such that for k € {1,...,n — 1} and 0 < ¢t < T}

t

L(t, Tx) = L(0, Ty) exp (J Als, Tk)dLST“l) , (6)

0
and the successive densities are given by the recursive relation

dPr, 1+ 8L(Ty, Tx)
dPr,., 14 6L(0,Ty)

The driving process has the form

t t t

Ll — JbsTkHds + JcédWST"“ + JJX(yT*—vT"“ )(ds, dx), (7)
0 0 0R
where (WtTHl)tZO is a Pr,,, standard Brownian motion with
Wl — Wl _ J;éa(s, Ty)ds ke{2,.,n—1}, (8)
w/r=wl",
and Tk (ds, dx) = FSTk+l (dx)ds is the Pr,,, compensator of ‘uT* with
{Fs?‘(d@ =Bl TYFR(dx) - k€ {2,n =1} ©)
Fli(dx) = FI" (dx),
such that
£(t—, Tx) = %,

alt, Tx) = €(t—, Te)A(t, T),
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and

Blt,x, Te) = €(t—, Ty) (e’d(t’T") - 1) 41

We conclude that for all k € {2,...,n — 1}

t A n—1
w/i=wl — J Y afs, Tj)ds (10)
(s
and
n—1
Fle(dx) = ] B(s,x, TE! (dx). (11)
=k

The drift term b7+ is chosen in such a way that the process L(., Tx) becomes a
martingale under the forward measure Pr, ,

t t
1
J/\(s, Tk)bSTk“ds =-3 J c A% (s, Ty)ds

0 0

t
— JJ(e"’\(S’Tk) — 1 —xA(s, Tk)) vl (ds, do). (12)
0R

We propose the following choice for the functions b’ for all k € {1,....,n — 1}

bSTk+1 - _ %/\(57 Ti)es — J‘<exl(srk)_1 _ x)ngH (dx) (0 <s<Ty)

A(S,Tk)
2 (13)
bl =0 (s > Ti).
The driving process LT becomes
t AT t
1 M) — 11 1
LtTkH _ J 5/1(57 Ty )cs + j(i)t(s, ) — x) FsTkﬂ (dx) | ds + JcﬁdWSTkﬂ
0 R
t
+ J Jx(‘uT*vT"“)(ds7 dx). (14)

0 R

Since L(t, Tx) is a Pr,,, martingale 1 4 0L(t, Ty) is a IPr,,, martingale as well, which
is up to the constant (1 + 8L(0, T}))~" the density process

dPy,
ap Tit1

B 1+ 8L(t, Tk)
7 14 6L(0, Ty)

(0<t<Ty).

By iterating this, we get
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dPr,,, 1:[1 1+ 6L(Tiy1, T))

Al T,
B(0,T*) =
= BOT) T (14 o110, 1),

B B<Oa Tk+1)j=k+1

Applying iteratively Proposition III.3.8 of Jacod and Shiryaev (1987) — which is a
very fundamental result for interest rate modelling — we see that its restriction to F;

dPr, B(0,T*)
sl o (14 6L(1,T}) (15)
dIPT* Fy B(07 Tk+1)j=k+l g
(0<t< Tgy)

is a Pr- martingale.
As has already been pointed out in Eberlein (2014) as a consequence of representations of

the type (Equation (15)) of arbitrary quotients % as products of quotients with successive

maturities T and Ty, Proposition I11.3.8 of Iacbd and Shiryaev (1987) guarantees also that

properly discounted zero coupon bond prices g((:;i ; are P, martingales. This means that the

LIBOR approach as developed above creates an arbitrage-free model.

With respect to numerical aspects and the application of the Malliavin calculus in
Section 3, it is important to note that already with the first measure change one looses the
property that the driving processes LT+ are time-inhomogeneous Lévy processes. This is
because the coefficients a(s, Tx) and (s, x, Tx) contain the random quantity L(s-, Tx). The
simplest approach to preserve this property is to replace €(s-, Tx) by its deterministic
starting value. Henceforth, we will make this assumption in the following sections.

Assumption 2.5 (Frozen drift approximation). For each k and all s belonging to
[0, T, we assume the approximation

SL(0, T,
€<S—,Tk) 26(0, Tk) :l—i—(gLi(Ok';k)

3. Sensitivity analysis

Following Eberlein and Kluge (2005) and Eberlein (2014), we shall consider valuation
formulas for standard interest rate derivatives such as caps, floors and swaptions in the
LLM. These formulas are computationally efficient. Since floor prices can be derived
from the corresponding put-call-parity relation, we concentrate on caps. A cap consists
of a sequence of caplets which are call options on LIBOR rates. The pay-off of a caplet
with strike rate K and maturity T is

S(L(Ty, Tx) — K)*,

where the payment is made at time point Tjy;. Its time-O-price, denoted by
Cplt, (T, K, §), is given by
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Cplty(Ty, K, 8) = B(0, Ty1)0p,  [(L(Tk, Ti) — K)']. (16)

3.1. Greeks computed by the Malliavin approach

In this part, we present an application of the Malliavin calculus to the computation of
Greeks within the LLM. We refer to the literature, for example, Di Nunno, @ksendal,
and Proske (2009) and Nualart (2006) for details on the theoretical aspects of Malliavin
calculus, but we mainly follow Fournié et al. (1999) and Yablonski (2008) (see the
Appendix) for the presentation of the mathematical results used in the sequel. The
forward LIBOR rates L(t,T) under the forward measures Pr, , can be written as
stochastic exponentials. Expressed as a differential, we get the Pr,,, dynamics in the
form

dL(t, Ty) = L(t—, Ty) éMnﬂMW@“+J@W“”—Uwpﬂﬂ“xmdﬂ
R
(17)

As in the classical Malliavin calculus, we are able to associate the solution of

Equation (17) with the process Y (¢, Ty) := ;)f(%%)), called the first variation process of

L(t, Tx). By applying Proposition A.10, the following proposition provides an expres-
sion for the Malliavin derivative operator D,, when applied to the LIBOR rates
L(t,Tx). This expression is simpler than the original one which follows from
Theorem A.9.

Proposition 3.1. Let L(¢, Tk)te[O,T*] be the solution of Equation (17). Then

L(t,Ty) € D"?, which is the domain of the derivative operator in L*(Q). The
Malliavin derivative satisfies the following equation:

DyolL(t, Ti) = Y(t, To) Y (r—, T) ' L(r—, T)EA(r, T)1p <y ace.. (18)

3.1.1. Variation in the initial condition
In this section, we provide an expression for the Delta, the partial derivative of the
expectation Cplt,(Tk, K,d) with respect to the initial condition L(0, Tx) given by

A(L(0, T¢)) = dCplt, (T, K, 8)
AL(0, Ty).

For a convenient representation of this expectation, we introduce two processes
which turn out to be Pr- martingales (see Equation (15))

m = T (0 one 1) 0T

j=k+1

(0 <t<Ty) (19)
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and

n—1

M= [ (1t +0L(t, Ty) (0 < £< Tep)- (20)
j=k+1

As mentioned in Fournié et al. (1999), let us define the set
~ Ti
T, = {hk c LZ([O, Tk]) : J hk(u)du =1 }
0
For all ¢t € [0, T*], define

= S €0, T T). e

j=kt1

Proposition 3.2. For all functions hy € Tk, we have

AL(0, Ty)) = %EPT* [(MlTk = M%{)+

(I o - )]

Proof. Following the results of Fournié et al. (1999) and Petrou (2008) concerning the
application of Malliavin calculus to finance, we consider now a more general pay-off of
the form H(L(Tk, Tx)) such that H : R — R is a locally integrable function satisfying

(22)

IE]}»T’(+1 [H(L(Tk, Tk))z] <0.

First, assume that H is a continuously differentiable function with compact support.
Then we can differentiate inside the expectation' and we get
OEs,  [H(L(Ti, T0))]

Ap(L(0, Ty)) := OL(0, Ty)

OL(Ty, Ty)

= E]P)TH] H’(L(Tk, Tk))m

=Ep, [H'(L(Tx, Tx)) Y (T, Tx)]-
For any hy € Ty and using Proposition 3.1, we find

T Y(u—, T
Y (T, Ti) ZJ (1) Dy oL(Ti, Tk) lu T t)
0 L(u—, Ty)ciA(u, Ty)

du.
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From the chain rule Proposition A.5 we find

o,
Y(u—, T
Ag(L(0,Ty)) = EkaH H'(L(T, Tx))hx(u) Dy o L( Tk, T) (u - D du
L(u—, Tx)cA(u, Ty)

0
k

Y(u—,T,
= Ep, | | DuoH(L(T, Te)hi(w) Gl
LO L(u_7 Tk>C%lA(ua Tk)
ey
= Ep,,_, JDM,XH(L(Tk,Tk))hk(u) Y(u_lTk) dudy(dx) | .
L0 R L(u—, Tx)ciA(u, Tg)

By the definition of the Skorohod integral (see Section A.5), we reach
Y(.,T
Au(L(0,Ty)) = B, _ [H(L(Tk, 7)8 (hko (—f’)aom)] .

However, <hk(u) Lﬁ) is a predictable process, thus the Skorohod
L(u=,To)ead(w,Tk) / o<u<T,

integral coincides with the It6 stochastic integral and we get

Tk

Au(L(0, 1)) = B, | [H(L(Tk, 1) [ o -

Y(M—, Tk)
(u—, Tk)c%)t(u, Tx)

dwjkﬂ} : (23)

By Lemma 12.28, p. 208, in Di Nunno, @ksendal, and Proske (2009), the result
(Equation (23)) holds for any locally integrable function H such that

EPT,(H [H(L(Tk, Tk))2]<oo.
In particular, if one takes H(L(Ty, Tk)) = B(0, Txy1)S(L(Tk, Tx) — K), we can

express the derivatives of the expectation CApl/tO(Tk,K, 8) with respect to the initial
condition L(0, T) in the form of a weighted expectation as follows:

Ty
A(L(O, Tk)) = (SB(O, Tk+1)E]ka+1 |:<L(Tk’ Tk) _ K)+ J %:l(c(u?rY;Z(—, Tk; )dWJk“] ‘
aAM(u, Te)L(u—, Tk

0

We show easily that Y(u—, Ty) = % and we reach

T
Tk
810,70 = PO g (1, T - 1) P g
L(0, Ty) o D aMu, Te)

In accordance with Equation (8) and taking the frozen drift approximation
(Assumption 2.5) into consideration, we can write for all k € {1,...,n — 2}
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¢ 1
Wik = W — J 5 (s)ds.
0
One can easily show that

n—1

+
K(ML — M%) = (L(Tw, Tx) — K)*
( Ty Tk) (L(Ty, Tx) — K) jl:L (24)

(14 OL(Tx, Tj))-
By making a measure change using the fact that

d]kaH
dP -

_ B(O,T) T
Fr, B(07Tk+1)

(14 8L(Tk, Ty))
j=kt1

we end up with

Ty
KB(0, T*
a1y = 2B g, [(M%k—M%fJ—lh"(“) dwfk“}

L(0, Tx) 0 ciM(u, Ty)

_ OKB(0, T") L2\t
~L(0, Ty) EPT*[(MTk MTk)

() [ hlft )
X<J TR J AMw, Ti) d)l
Od

Remark 3.3. The function hj used in this formula allows a lot of flexibility. An
A(uaTk)

obvious choice which simplifies the formula considerably is h(u) = Tore T
0 u,lg)au

3.2. Greeks computed by the approximative Fourier-based valuation method

Making use of Equation (24), we can write the time-0-price CApl/tO(Tk, K,9) as
— +
Cplt,(Ty, K, 8) = 6KB(0, T*)Eg,. [(M}k - M%k) } (25)

Substituting L(t, T;) in Equations (19) and (20) by its explicit form (Equation (6))
and using the fact that LT+ and LT differ only by a drift term, we get the
representation

n—1

M= IT |1+ oro. 5y x|

j=k+1

X wexp (J )L(S, Tk)dLST* + d(l’, Tk)) (26)
0

t

Mo T)LE 4 d(eT) )|

0

and
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n—1 t
M? = H <1 + 8L(0, T;) exp <J Ms, T))dLT +d(t, T,~)>>. (27)

j=k+1 0

For small values |x| and ¢>0, we use now the approximative relation
€
1 +eexp(x) =~ (1 +¢)exp|l ——x ). 28
+eexp() = (1+2)exp( ) (8)

As a consequence, we can approximate

t

1+ 8L(0, Tj) exp (J M, Ty)dLT +d(t, Tj))

0

(14 0L(0, T;)) exp (Le(o, T)A(s, T;))dL! + €(0, T;)d(t, Tj)> :

(M})o<,<q, and (M7)y, <7,,, are Pr- martingales. We replace now the factors in
Equations (26) and (27) by the approximating terms and determine appropriate
exponential compensators D' and D? such that we get again Pr- martingales. The

resulting processes (]\~4t1)0 <<, and (]\~/It2)0 <i<1,,, can explicitly be written in the

form
ol L(Ov Tk) B(07 Tk+1) Jt k T* Jt T* 1
= dL A(s, Ty )dL D
t K B(O, T*) eXp Of (S) s + 0 (57 k) s + t
and
2 B(O, TkH) Jt k ™ 2
=20 Tkl LT + D
Mt B(O, T*) eXp Of (S)d N + t |
where
t t -1
D; =1n| Ep,. {exp (Jfk(s)dLsT* + J/\(s, Tk)dLST*)}
0 0
and

-1

t
D} =In| Ep,. |exp Jfk(s)dLsT*
0

With the new processes we get an approximative formula for the caplet price
(Equation (25))
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Cplt,(Ty, K, 8) ~ SKB(0, T)Ep,. _(MlTk - Mikf . (29)

Define
Cplty(Ty, K, 8) := 8KB(0, T*)Ep,. _(M;k - M%kf , (30)

and
10,1y = 2Pl
Then

Cplty(Ti, K, 8) ~ Cplty(Ty, K., 6) (31)
A(L(0, Ty)) ~ A(L(0, Ty)). (32)

Since M and M? are P;. martingales, we can introduce a Pr,,, forward measure on
(Q, Fr,.,) by setting

~ ~ Tier1
d]]‘:DTk 1 M%k 1 k T* 2

Wﬁ: — ]\71—5 = exp l fr(s)dL; + DTk+1

By the semimartingale version of Girsanov’s theorem (see Jacod and Shiryaev (1987))

t 1
Wit = wl — J cf*(s)ds (33)
0

isa ]ﬁTk ., standard Brownian motion and
vk (dt, dx) = exp(fk(s)x)vT* (dt, dx) (34)

is the ]FPST,(+l compensator of T . Expressing Equation (30) in terms of the new measure,
we get

Cplto(Ty, K, 8) = SKB(0, Tis)B, [(exp(Xr,) — 1], (35)

+1

where X is defined as the process

M} L(0, Ty) ' .
X = ln]\N/[—t2 =In (T + JO/\(S, Ty)dL! + D} — D}.

t

Proposition 3.4. Suppose R € (1,1 + ¢) such that the moment-generating function of
Xr, with respect to IPr,, is finite, then
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. Tj
B 5 L 07 T —14+R+iu )
A(L(0, Ty)) = %B(O, Tit1) J< <7( % k)> exp{ J (J {e"fk(s) (e“R*’”WS’Tk) — 1)
R 0 R

— (R+ iu)e? (eﬁ STi) _ 1)}1{* (dx)

1 1
Proof. Using the Fourier-based valuation approach (for details, see Theorem 2.7 in
Eberlein, Glau, and Papapantoleon (2010)), we get the following explicit integral
representation for Equation (35). Suppose R € (1,1 +¢) such that the moment-
generating function of Xy, with respect to IP’Tk . is finite at R, i.e. MXT (R) < o0,
then
Ké 1

Cplt()(Tk, I<7 8) - EB(O, Tk+1)JRMXTk(R + lu) (_R — lu)(l — R — 1u) du

where the moment-generating function Z\N/IXTk is given by (for details, we refer to
Eberlein and Kluge (2005))

i, ) = (HOTY)

xexp(J [H(fk (s) + 2A(s, Tk)) — 265 (f*(s) + A(s, Tk)) (37)

+ e D0 )

for all z € C with Re(z) = R, with cumulant function

0,(z) = zb!" + %csz + J( — 1 —zx)F!" (dx) (38)
R
and
I 8L(o, T)
k(o) — :

Taking into account the choice of the drift coeficient in Equation (13), the cumulant
function 6; and the moment-generating function My, , respectively, become

A B A 1
@(z)-zJ( . AT )FS (dx)—i—icsz(z—/\(s,T,,_l)),



APPLIED MATHEMATICAL FINANCE ‘ 251

Tj
st ) = (M) e { [ ( Jleo (erem - 1) (0
0 R

— 2 (e")‘(s’m - 1)}FST*(dx)

F3e (s T)e( - 1)) s}

Hence, the approximative valuation formula can be written as

. Ty
e Ké L(0, T\ ™ .
Cplto(Tk, K, (S) = EB(O, Tk+1) J< < ( I’< k)) exp { J (J[exfk(s) (ex(R+tu)l(s,Tk) _ 1)
R 0 R

—(R+ iu)exfk(s) (e"’\(s‘Tk) — 1)}FST (dx)

+%CS(A(S, T2 (R+ iu)(=1 + R + iu))ds}

1
“TCR—iw)(1 — R— i) >d“'

We conclude that the Delta computed using the approximative Fourier-based valua-
tion method is given by

A(L(0, Ty)) = %B(O, Tii1) J< <@> o exp { TJk <J [eXf"(S) (exmmm(s,n) _ 1)

R R

—(R+ iu)exfk(s) (e""(s’Tk) - 1>]FST (dx)

+%CS<A<S, Ti))? (R + iu)(—1 +R+iu)>ds}m>du. (41)

O
Example 3.5 (Variance Gamma (VG) component) We suppose that the jump compo-
nent of the driving process LT given in Equation (3) is described by a Variance Gamma
process with the Lévy density v given by

1 o6 1 2 @&
v(dx) ve(x)dx T exp (02 X == , + 02|x> X,
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where (0,0,n) are the parameters such that 6 €R, ¢>0 and #>0. A
more convenient parametrization is achieved by setting B = 0—92 and C zéw/%—i—Z—z.
Then

exp(Bx — Clx|)

(42)
x|

Fyg(x) =

Using Frullani’s integral (see, for details, Ostrowski (1949)), we can show that, if
acC and peC such that Re(a)>0, Re(f)>0 and g € C\R™ where

R™ =] — 00;0], then
+oo e _ e—ﬁx ﬁ
Liap = —dx=log| ™ 43
() L X x = log <a> (43)

where log is the principal value of the logarithm. Exploiting this formula and
setting

(s, z) = —(2A(s, Te) + f¥(s) + B - C), (44)

Bi(s) = —(f*(s) + B—C) (45)

a tedious computation shows that the moment-generating function becomes

Y — M erx 1TkO S)(ZC ﬁk ) s
MXTk(z)—< < ) P(WJ 18( (, 2)(2C — (s, z)))d>
ol - [0 Dl ) S
p( Jlg(mk T ﬁA$+M%ﬂD>d>

Tk
X exp (J %/\2(5, Ty)z(z — 1)d5>.
0

Plugging this in the approximative valuation formula, we get

L(O, Tk) R+iu
K

L B, 20— B9)
* exp (ZL log<(xk(s,R—|—kiu)(2C—oc];i(s,R—l-iu)) ds)
ex _ R+iu R Bi(s) (2C =B (5)) X
" P( e ((ﬁku X, n))(zc—ﬁk(s)H(s,n)))d)

1

X exp (Jok%,\z(s, Tv)(R+iu)(—1 —|—R—|—iu)ds> (CR—iu)(1—R—iu) du.

K5
Cplto(Ty, K,8) = (0 Tk+1)J<
R
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The approximate Delta is therefore given by

—1+R+iu
B(L0. 1) = 5810, i) | (M)
R
[ Bi()(2C —~ Bi(5))
X exp (HJO 10g<(x (S R+ m)(ZC — Oék(S,R +i )))ds>

o _R+iu o Bi(s)(2C — B (s) ) )
: p( n Jlg((ﬁk A(s; T) (2C = Bi(s) (sm))d>

X exp (J %)LZ(S, Te)(R+iu)(—1+ R+ iu)ds)

———du
0 —1+4+ R+ iu

For the approximate Gamma, one gets the form

PCplty (T, K,8) 6 L(0, Ty)\ et
Fai0. 1)) = St —MK<onHﬂ( )
R

1 Bi(s) (2C — Bi(s))
X exp (77 ock s, R +k1u)(2C - oci(s, R+ iu))> ds)
N B(5)(2C ~ 6,9) S
) p( ((ﬁk( ) (Sa Tk)) (2C—[3k(s) +/\(57 Tk))>d >

X exp (Jo —)tz(s Te)(R+iu)(—1+ R+ iu)ds) du.

Example 3.6. (Non-homogeneous Gamma (IGP) component) We suppose that the jump
component of the driving process LT~ given in Equation (3) is described by an inhomo-
geneous Gamma process (IGP), which is introduced by Berman (1981) as follows

Definition 3.7. Let A(t) be a non-decreasing function from R* — R" and B>0. A
Gamma process with shape function A and scale parameter B is a stochastic process

(Lt);>o on R such that

(1) Ly =0,

(2) Independent increments: for every increasing sequence of times to, ..., ¢, the
random variables L, ,L; — L, ...,L;, — L;,_, are independent,

(3) For 0 < s<t, the distribution of the random variable L; — L, is the Gamma
distribution T'(A(t) — A(s), B).

Remark 3.8. If the shape function A is differentiable, we can write the shape function
A in the form
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Alt) = J A(s)ds + A(0)

0
for all t € RT where A denotes the derivative of A.

In this case, the Lévy measure of the Gamma process L is given by

F9(dx) = A(s) exBx

1x>0dx.

The approximate Delta is now
~ aCplt,(Ty, K, 8)
AL(0.T,)) = ——0\"&7> 7/
( ( ) k)) 8L(0, Tk)
0

=2 50,100 j< (o)

R

xexp{jjk(ms)log(_mlu;{i(%@ “F )+ )

—f*(s) + >
Als; Tr) f"( )+

— A(s)(R + iu) log<

+%CS(A(S, TV (R + iu) (—1 + R+ iu))ds}

1
X ————— )du
—1+R+iu
whereas the approximate Gamma is

- PCplt (Ty, K, &
F(L(0,Ty) = gzL(’((() e )

- %B(o, Terr) J< (@) 2 R+iu

R

X exp{LTk (A(S> 108(_(R + iu)d jZ(SI)}; Bfk( )+

k
— A(s)(R + in) 1°g< AGs, Ti)( )f"( )+ )

2

+ L Vs TR + i) (=1 + R + iu)>d5}>du.

5
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Note

1. See Fournié et al. (1999) for details
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Appendix Malliavin calculus for time-inhomogeneous Lévy processes

For the ease of reading, we present in this appendix the Malliavin derivative D as well as the
Skorohod integral § for the class of processes which we use. Yablonski (2008) studied these
notions in a slightly more general context, namely for processes with conditionally independent
increments. Conditioning is not relevant in our case. The ¢ field H considered by Yablonski is
trivial for time-inhomogeneous Lévy processes.

A.1 Isonormal Lévy process (ILP)
Let y and v be o finite measures without atoms on the measurable spaces (T, .4) and (T x X, B),
respectively. Define a new measure

n(dt, dz) = p(dt)de(dz) + v(dt, dz) (A1)


http://dx.doi.org/10.1007/s00780-003-0111-6
http://dx.doi.org/10.1007/s007800050068
http://dx.doi.org/10.21314/JCF.1999.037
http://dx.doi.org/10.1007/s007800050026
http://dx.doi.org/10.1007/s007800100055
http://dx.doi.org/10.1007/s007800100055
http://dx.doi.org/10.1080/10451120410001716880
http://dx.doi.org/10.1080/10451120410001716880
http://dx.doi.org/10.1111/j.1540-6261.1997.tb03823.x
http://dx.doi.org/10.1073/pnas.35.10.612
http://dx.doi.org/10.1214/EJP.v13-502
http://dx.doi.org/10.1007/BF01191910
http://dx.doi.org/10.1137/1120030

APPLIED MATHEMATICAL FINANCE ‘ 257

on a measurable space (T x X, G), where X = Xo U {®}, G = (A x {®}, B) and dg(dz) is the
measure which gives mass one to the point ©. Consider the Hilbert space H = L*(T x X, G, )
and assume that this space is separable.
Definition A.1. We say that a stochastic process L = {L(h),h € H} defined on a complete
probability space (Q, F, P) is an isonormal Lévy process (or Lévy process on H) if the following
conditions are satisfied

(1) The mapping h — L(h) is linear;

(2) E[e*(M] = exp(¥(x, h)), where

Y(x, h) = JTXX ((ei"h(t’z) — 1 —ixh(t,z))1x,(2) — %xzhz(t7 z)I@(z)) n(dt, dz).

Remark A.2. 1t is easy to show that E[L(h)] = 0 and E[L(h)L(g)] = (h;g) for all h,g € H.

A2 The derivative operator
In this section, we introduce the derivative operator D which coincides with the classical
Malliavin derivative in the Gaussian case (see, e.g., Nualart (2006)) and with the difference
operator defined in Nualart and Vives (1990) and Picard (1996) in the Poisson case.

Let S denote the class of smooth random variables, that is the class of random variables £ of
the form

é':f(L(hl)a"'aL(hn)L (A2)

where f belongs to C;°(R"), hy, ..., h, are in H, and n > 1. The set S is dense in L?(Q) for any
p > 1. We refer for the following definition to Yablonski (2008).

Definition A.3. The stochastic derivative of a smooth random variable of the form (Equation (A2))
is the H-valued random variable D¢ = {D; &, (t,x) € T x X} given by

Dist = kzj—jku(hl), s L() (8, ) Lo () (A3)

+ (f(L(hy) + hi(t,x), ..., L(hy) + hy(2, %))

—f(L(1), - L(~a)))1x, (%)-

We will consider D¢ as an element of L*(T x X x Q) = L2(Q; H); namely D¢ is a random
process indexed by the parameter space T x X.

(1) If the measure v is zero or h(t,x) =0, k = 1,...,n when x # © then D¢ coincides with
the Malliavin derivative (see, e.g., Nualart (2006)).
(2) If the measure y is zero or hi(t,x) =0, k= 1,...,n when x = © then D¢ coincides with

the difference operator (see, e.g., Picard (1996)).

A.3 Integration-by-parts formula
Theorem A.4. Suppose that { and # are smooth random variables and & € H. Then

(1) E[L(h)] = E[(DE; h) ),
(2) E[gnL(h)] = E[n(D&; h) ] + E[§(Dn; h) ] + E[(Dry; h1x, DE) ).

As a consequence of the above theorem we obtain the following result

o The expression of the derivative D¢ given in Equation (A3) does not depend on the
particular representation of ¢ in Equation (A2).

« The operator D is closable as an operator from L*(Q) to L*(Q; H).
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A4 The chain rule

We will denote the closure of D again by D and its domain in L?(Q) by D'?.

Proposition A.5 (see Yablonski (2008), Proposition 4.8) Suppose F = (Fi,F,,...,F,) is a
random vector whose components belong to the space D', Let ¢ € C'(R") be a function with
bounded partial derivatives such that ¢(F) € L*(Q). Then ¢(F) € D'* and

n (9(/5
+= (F)D; o F; o
Dy x¢(F) = izlf)x,( )D:oF;

$(F1 + DiyFy,. o Fy 4 DiyFy) = §(Fry. . Fa)  x # ©

A.5 The Skorohod integral
In this section, we consider the adjoint of the operator D which coincides with the Skorohod
integral (see Skorokhod (1976)) in the Gaussian case and with the extended stochastic integral
introduced by Kabanov (see Kabanov (1975)) in the pure jump Lévy case. See also Benth et al.
(2003) and Lokka and Benth (2004). Consequently, it can be considered as a generalization of the
stochastic integral.

We recall that the derivative operator D is a closed and unbounded operator defined on the
dense subset D"* of L2(Q) with values in L?(Q; H).

We denote by & the adjoint of the operator D and we call it the Skorohod integral. The
operator 8 is defined on a subset Domd of L*(Q; H) with values in L2(Q), where DomS is the set
of processes u € L2(Q; H) such that

‘EU Dy Fu(t,z)n(dt, dz)” < ¢||Fllizq
TxX

for all F € D"* and where ¢ is some constant depending on u. If u € Domd, then 8(u) is the
element of 12(Q) such that

E[FO(u)] = E U D, Ful(t, z)n(dt, dz)} (A4)

TxX

for any F € D' Let us note that § is a closed and unbounded operator on Domd.

A.6 Commutativity relationship between the derivative and divergence operators
Let IL'* denote the class of processes u € L?(T x X x Q) such that u(t, x) € D" for almost all
(t,x), and such that there exists a measurable version of the multi-process D; ,u(s, y) satisfying

E UTXXJTXX(D,_,Xu(s,y))zﬂ(dt, dx)n(ds, dy) | <oo.

Proposition A.6. Suppose that u € IL"* such that for almost all (t,z) € T x X the two-parameter
process (D;u(s,y)) (s)eTxX is Skorohod integrable, and such that there exists a version of the

process (8(Dy u(., .)))W)Uxx which belongs to L?(T x X x Q). Then §(u) € D"? and we have
D, 8(u) = u(t,z) + 8(Dyzu(.,.)). (A5)

A.7 The It6 stochastic integral as a particular case of the Skorohod integral
Let W ={W,,0 < t < T} be a d-dimensional standard Brownian motion, N a compensated

Poisson random measure on [0, T] x R¥\{0} with compensator v(dt,dx) = p,(dx)dt, where
0

(Bi)icpo,ry is a family of Lévy measures satisfying J J(|x|2 A 1)B,(dx) | dt < oco. For each t €
T \ R4

[0, T] denote by F; the o algebra generated by the random variables



APPLIED MATHEMATICAL FINANCE ‘ 259

{W;,N((O,s] X A);0 < s < ti=1,...,dAcBR\{0}), sup B,(A) < oo}

0<s<t

and the null sets of 7. We denote by Lf, the subset of L?(Q; H) formed by the (F;) predictable
processes.

Proposition A.7 L2 C Domd, and the restriction of the operator § to the space L; coincides with
the usual stochastic integral, that is

O(u) = i JTu"(l‘7 0)dW; + J

T
J u(t, x)N(dt, dx). (A6)
R\{0}

0

A.8 Regularity of solutions of SDEs driven by time-inhomogeneous Lévy processes

We focus on a class of models in which the price of the underlying asset is given by the following
stochastic differential equation (see Di Nunno, @ksendal, and Proske (2009) and Petrou (2008)
for details)

ds; = b(t,S;_)dt + a(t, S, )dW; + J o(t,S;_,z)N(dt, dz), (A7)
Ro

S()IX

where x € Rd, {W,0 < t < T} is a m-dimensional standard Brownian motion, N is a com-

pensated Poisson random measure on [0, T] x Ry with compensator v;(dz)dt. The coefficients

b:R" xR =R 6:RY xR - R x R"and ¢ : RF ><RdXRHRdXRarecontinuously

differentiable with bounded derivatives and the family of positive measures (v),c(o 7 satisfies
0

[ (J (|l2]* A l)vt(dz)) dt< oo and v({0}) = 0. The coeflicients are assumed to satisfy the

Jr\Jr,

following linear growth condition

lo(¢, )11* + llo(t, x)[I” + JR gt x,2)|*v.(dz) < C(1 + [|xII*),

for all t € [0, T}, x € RY where C is a positive constant.
Furthermore we suppose that there exists a function p : R — R with

sup JR Ip(2) P(de)<o, (A8)

0<t<T
and a positive constant K such that
” ‘P(tvxvz) - q)(tvyvz) ” < K|P(z)| ” xX=y Hv (A9)

for all t € [0, T], x,y € RY and z € R,. Similarly to the homogeneous case, see more details on
page 334 in Di Nunno, @ksendal, and Proske (2009), we have the following lemma

Lemma A.8. Under the above conditions, there exists a unique solution (St)te[o.T] for Equation
(A7). Moreover, there exists a positive constant Cy such that

E[ sup |St2}<C0.

0<t<T

In the sequel, we provide a theorem which proves that under specific conditions the solution of a
stochastic differential equation belongs to the domain D", For details, we refer to Eddahbi and
Lalaoui Ben Cherif (2016) and Di Nunno, @ksendal, and Proske (2009).
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Theorem A.9. Let (Sf)te[OT] be the solution of Equation (A7) and assume that the condition
(Equation (A8)) is satisfied. Then S, € D' for all ¢ € [0, T] and we have

(1) The derivative D, S; satisfies the following linear equation

t b t
Dr,OSt = J g_ (Z/l, Suf)Dr,OSu—du + 0’(”7 Srf) + J ? (Ll, Suf)Dr,OSudeu
% r0x
t
+ J J 99 (4, Sy, ¥)Dy0Su_N(du, dy)
rJR, OX ’

for 0 < r < tae. and D,oS; = 0 a.e. otherwise.

(2) For all z € Ry the derivative D, ,S; satisfies the following linear equation

t

t
D, .S = J D, .b(u,S,-)du + J D, ,0(u,Su—)dW, + ¢(r, S, 2)

t
4] | DregtuSun )Ny
Ry

r

for 0 < r < tae. and D, ,S; = 0 a.e. otherwise.

Having in mind the applications in finance, we will also provide a specific expression for the
Wiener directional derivative of the solution. As in the classical Malliavin calculus, we are able to
associate the solution of Equation (A7) with the first variation process Y; := a—i‘ We reach the
following proposition which provides a simpler expression for D, S;. For details, we refer to
Eddahbi and Lalaoui Ben Cherif (2016) and Di Nunno, @ksendal, and Proske (2009).

Proposition A.10. Let (S;)

7] be the solution of Equation (A7). Then the derivative satisfies
the following equation

telo,

Dy oSy = Y,Y,'o(r, S, )1,y ace. (A10)
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