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ABSTRACT
The aim of this article is to compute Greeks, i.e. price sensitivities
in the framework of the Lévy LIBOR model. Two approaches are
discussed. The first approach is based on the integration-by-parts
formula, which lies at the core of the application of the Malliavin
calculus to finance. The second approach consists of using Fourier-
based methods for pricing derivatives. We illustrate the result by
applying the formula to a caplet price where the jump part of the
driving process of the underlying model is given by a time–inho-
mogeneous Gamma process and alternatively by a Variance
Gamma process.
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1. Introduction

When a financial institution sells a derivative product to a customer, it is usually
interested to preserve the initial margin and consequently tries to avoid or at least to
reduce the market risk by hedging the position. In some cases, one can make use of a
static hedging strategy, that means hedge-and-forget. Unfortunately for most deriva-
tives, there is no static hedge, instead one has to hedge dynamically. For this, traders
need to know the exposure of their positions to changes of parameters which go into
the valuation formula, called the sensitivities or Greeks. Note that the possibility to
hedge a position is also crucial for the classical pricing approach via the cost of hedging.
From the mathematical point of view, Greeks are partial derivatives of the pricing
functional with respect to specific parameters. Traditionally, they are estimated by
means of a finite difference approximation. Two kinds of errors are produced this
way: one which comes from the approximation of the derivative by a finite difference
and another one which results from the numerical computation of the expectation
which represents the pricing functional. To eliminate the former source of error,
Fournié et al. (1999) adopted a new approach which allows to transform the differential
operator into a random weight. The result is an expectation operator applied to the
product of the pay-off function with a random weight function.
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In the context of equity models, this approach has been successfully used not only for
diffusion-driven approaches, but also for models which allow jumps. El-Khatib and
Privault (2004) study a model which is driven by a discontinuous process with Poisson
jump times and random jump sizes. Although European options do not satisfy the
regularity conditions required in their approach, they show that Asian options can be
considered due to the smoothing effect of the integral over time. Davis and Johansson
(2006) investigate a jump diffusion setting with a deterministic jump amplitude. An
additional separability assumption has to be imposed. Bayazit and Nolder (2013)
consider exponential Lévy models driven by Variance Gamma and by Normal Inverse
Gaussian Processes. They obtain approximations of various sensitivities after replacing
the underlying continuous time driving process by an approximating sequence of
random variables.

A rather different approach to obtain sensitivities in exponential Lévy models
exploits the Fourier-based valuation formulas for derivatives. For a systematic investi-
gation under which conditions Fourier-based methods apply, see Eberlein, Glau, and
Papapantoleon (2010). This reference contains also a section where sensitivities are
derived. A more recent paper along these lines is De Olivera and Mordecki (2014). As
far as hedging issues in exponential Lévy models are concerned, we recommend the
review by Tankov (2011).

It is the purpose of the current paper to study sensitivities in a different area namely
for fixed income markets. We focus on the celebrated LIBOR market model (LMM). In
the framework of the classical diffusion version of the LMM as introduced by Brace,
Gatarek, and Musiela (1997) (see also Miltersen, Sandmann, and Sondermann (1997) as
well as Jamshidian (1997)), Glasserman and Zhao (1999) investigate the estimation of
option price sensitivities based on Monte Carlo simulation of the forward LIBOR rates.
In spite of the complexity of the LMM which is well above that of equity models, they
succeed to extract conditions under which the discrete time estimator gives unbiased
derivative estimates for the simulated process and also under which it converges to the
correct continuous time limit.

The diffusion-based LIBOR market model offers a high degree of analytical tract-
ability. However, due to the rigidity of the normal distribution, it has limitations as far
as its calibration to price data is concerned. Among other shortcomings, it cannot
reproduce the phenomenon of changing volatility smiles along the maturity axis. In
order to gain more flexibility in a first step, one can replace the driving Brownian
motion by a (time–homogeneous) Lévy process such as a generalized hyperbolic Lévy
process or a process from a suitable subclass. This improves the model performance
already considerably but the shape of the volatility surface produced by cap and floor
prices is typically too sophisticated in order to be matched sufficiently well by a model
which is driven by a time–homogeneous process. A more accurate calibration of the
model across different strikes and maturities and thus a reduction of model risk can be
achieved by using the larger class of time–inhomogeneous Lévy processes (see, e.g.,
Eberlein and Kluge (2005) and Eberlein and Özkan (2005)). In practical applications, a
mild form of time–inhomogeneity turns out to be sufficient. Changing the process
parameters twice along the time axis produces already satisfactory results (Eberlein and
Kluge (2005)). This corresponds to choosing one Lévy parameter set for short matu-
rities, one for the middle range and another one for the long maturities.
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In order to take these aspects into account, we focus in the following on the computa-
tion of Greeks in the framework of the Lévy LIBORmodel (LLM) which was introduced in
Eberlein and Özkan (2005). Note also that time–inhomogeneity of the driving processes
develops naturally during the measure changes along the tenor structure. Therefore, one
does not give up simplifying structural properties by starting already with the wider class
of time–inhomogeneous processes. We discuss the computation of Greeks in both
approaches mentioned earlier which come from totally different mathematical fields.
The first approach is based on the integration-by-parts formula, which lies at the core of
the application of the Malliavin calculus to finance as developed in Fournié et al. (1999),
León et al. (2002), Petrou (2008) and Yablonski (2008). The second approach consists of
using Fourier-based methods for pricing derivatives. For a recent survey of Fourier-based
methods, see Eberlein (2014). We illustrate the result by applying the formulas to the
pricing of caplets where the jump part of the driving process of the underlying model is
given by a time–inhomogeneous Gamma process and alternatively by a Variance Gamma
process. For the ease of reading in an appendix, the relevant definitions and results of the
Malliavin calculus are presented on the level of generality which is required here.

2. The LLM

In the classical Heath–Jarrow–Morton theory, instantaneous forward rates represent the
basic quantity in interest rate term structure modelling. These rates are an infinitesimal
quantity given by

f ðt;TÞ ¼ � @

@T
lnBðt;TÞ; (1)

where Bðt;TÞ is the price at time t 2 ½0;T� of a default-free zero coupon bond which
matures at time T. f ðt;TÞ is however not observable in the market. What can be
observed instead are forward LIBOR rates Lðt;TÞ which are the discretely compounded,
annualized interest rates which can be earned from investment during a future interval
starting at T and ending at T þ δ considered at the time point t<T

Lðt;TÞ ¼ 1
δ

Bðt;TÞ
Bðt;T þ δÞ � 1

� �
: (2)

We recall that the forward price process for two maturities T and T þ δ is defined as
the quotient of the corresponding discount factors

Fðt;T;T þ δÞ ¼ Bðt;TÞ
Bðt;T þ δÞ :

The LLM was developed by Eberlein and Özkan (2005) following the seminal articles
on LIBOR market model driven by Brownian motion by Miltersen, Sandmann, and
Sondermann (1997) and Brace, Gatarek, and Musiela (1997). We repeat in this section
some facts as presented in Eberlein (2014). The model is developed via a backward
induction and driven by a time–inhomogeneous Lévy process LT

�
defined on a com-

plete stochastic basis ðΩ;F ¼ FT� ;F;PT� Þ where PT� should be regarded as the
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forward martingale measure for the settlement date T� and the filtration F ¼
F tð Þt2½0;T�� satisfies the usual conditions. LT

�
is given by

LT
�

t ¼
ðt
0

bT
�

s dsþ
ðt
0

c
1
2
sdWT�

s þ
ðt
0

ð
R

xðμT��νT� Þðds; dxÞ (3)

with characteristics

BT�
t ¼

ðt
0
bT

�
s ds; Ct ¼

ðt
0
csds; νT

�ðds; dxÞ ¼ FT
�

s ðdxÞds:

Here T� denotes the end point of a tenor structure 0 < T1 < ::: < Tn�1 < Tn ¼ T�

where the corresponding contract runs from T1 to Tn, ðWT�
t Þt�0 is a PT� standard

Brownian motion, μT
�
the random measure of jumps of LT

�
and νT

�
is the PT�

compensator of μT
�
. We assume δ ¼ Tkþ1 � Tk for 1 � k � n� 1 to be independent

of k and the usual integrability assumptions.

Assumption 2.1. The drift term bT
�

s 2 R , the volatility coefficients cs and the Lévy
measure FT

�
s satisfy

9 σ > 0; "s 2 ½0;T�� : cs > σ

and

ðT�

0

bT
�

s þj jcs
�� ��þ ð

R

jxj2 ^ 1
� �

FT
�

s ðdxÞ
0@ 1Ads<1:

Assumption 2.2 (EM ). There exists a constant M > 1 such that

ð
xj j>1

expðuxÞFT�
s ðdxÞ<1 "u 2 ½�M;M�; "s 2 ½0;T��:

Two ingredients are needed for the LLM.

Assumption 2.3 (LR .1) For any maturity Tk there is a deterministic function
λð:;TkÞ : ½0;T��7!R which represents the volatility of the forward LIBOR rate process
Lð:;TkÞ. These functions satisfy

●
Pn�1

k¼1 λðs;TkÞ � M0 ; "s 2 ½0;T��, for some M0<M
2 , where M is the constant from

Assumption ðEM Þ,
● λðs;TkÞ> 0 for all s 2 ½0;Tk½ and λðs;TkÞ ¼ 0 for s � Tk, for any maturity Tk.
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Assumption 2.4 (LR .2). The initial term structure Bð0;TkÞ for 1 � k � n is strictly
positive and strictly decreasing in k.

The backward induction starts by setting the most distant LIBOR rate Lðt;Tn�1Þ
under the forward martingale measure PT� as

Lðt;Tn�1Þ ¼ Lð0;Tn�1Þ exp
ðt
0
λðs;Tn�1ÞdLT�

s

� �
: (4)

Expressed as a differential we get the PT� dynamics

dLðt;Tn�1Þ ¼ Lðt�;Tn�1Þ
�
c
1
2
tλðt;Tn�1ÞdWT�

t þ
ð
R

ðeλðt;Tn�1Þx � 1ÞðμT��νT
�Þðdt; dxÞ

þ λðt;Tn�1ÞbT�
t þ 1

2
ctλ

2ðt;Tn�1Þ
� �

dt

þ
ð
R

exλðt;Tn�1Þ � 1� xλðt;Tn�1Þ
� �

νT
� ðdt; dxÞ

�
:

One forces this process to become a PT� martingale by choosing bT
�
such thatðt

0
λðs;Tn�1ÞbT�

s ds ¼ � 1
2

ðt
0
csλ

2ðs;Tn�1Þds

�
ðt
0

ð
R

exλðs;Tn�1Þ � 1� xλðs;Tn�1Þ
� �

νT
� ðds; dxÞ: (5)

Define

,ðt�;Tn�1Þ ¼ δLðt�;Tn�1Þ
1þ δLðt�;Tn�1Þ ;

αðt;Tn�1Þ ¼ ,ðt�;Tn�1Þλðt;Tn�1Þ

and

βðt; x;Tn�1Þ ¼ ,ðt�;Tn�1Þ exλðt;Tn�1Þ � 1
� �

þ 1:

Then the forward process Fð:;Tn�1;T�Þ is given as a stochastic exponential

Fðt;Tn�1;T
�Þ ¼ Fð0;Tn�1;T

�ÞEtðZÞ

with

Zt ¼
ðt
0

c
1
2
sαðs;Tn�1ÞdWT�

s þ
ðt
0

ð
R

ðβðs; x;Tn�1Þ � 1ÞðμT��νT
� Þðds; dxÞ;
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and is consequently a PT� martingale. We use this forward process as a density process
and define the forward measure PTn�1 by setting

dPTn�1

dPT�
¼ FðTn�1;Tn�1;T�Þ

Fð0;Tn�1;T�Þ ¼ ETn�1ðZÞ:

By the semimartingale version of Girsanov’s theorem (see Jacod and Shiryaev (1987))

WTn�1
t :¼ WT�

t �
ðt
0
c
1
2
sαðs;Tn�1Þds

is a PTn�1 standard Brownian motion and

νTn�1ðdt; dxÞ :¼ βðt; x;Tn�1ÞνT� ðdt; dxÞ

is the PTn�1 compensator of μT
�
. We take PTn�1 as the new underlying probability

measure and define Lðt;Tn�2Þ in the same way as Lðt;Tn�1Þ defined in Equation (4).
Continuing this way one gets forward LIBOR rates Lðt;TkÞ and forward measures PTkþ1

such that for k 2 f1; :::; n� 1g and 0 � t � Tk

Lðt;TkÞ ¼ Lð0;TkÞ exp
ðt
0
λðs;TkÞdLTkþ1

s

� �
; (6)

and the successive densities are given by the recursive relation

dPTk

dPTkþ1

¼ 1þ δLðTk;TkÞ
1þ δLð0;TkÞ :

The driving process has the form

LTkþ1
t ¼

ðt
0

bTkþ1
s dsþ

ðt
0

c
1
2
sdWTkþ1

s þ
ðt
0

ð
R

xðμT��νTkþ1Þðds; dxÞ; (7)

where ðWTkþ1
t Þt�0 is a PTkþ1 standard Brownian motion with

WTk
t ¼ WTkþ1

t �
ðt
0
c
1
2
sαðs;TkÞds k 2 f2; :::; n� 1g;

WTn
t ¼ WT�

t ;

8<: (8)

and νTkþ1ðds; dxÞ ¼ FTkþ1
s ðdxÞds is the PTkþ1 compensator of μT

�
with

FTk
s ðdxÞ ¼ βðs; x;TkÞFTkþ1ðdxÞ k 2 f2; :::; n� 1g

FTn
s ðdxÞ ¼ FT

�
s ðdxÞ;

	
(9)

such that

,ðt�;TkÞ ¼ δLðt�;TkÞ
1þ δLðt�;TkÞ ;

αðt;TkÞ ¼ ,ðt�;TkÞλðt;TkÞ;
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and

βðt; x;TkÞ ¼ ,ðt�;TkÞ exλðt;TkÞ � 1
� �

þ 1:

We conclude that for all k 2 f2; :::; n� 1g

WTk
t ¼ WT�

t �
ðt
0
c
1
2
s

Xn�1

j¼k

αðs;TjÞds (10)

and

FTk
s ðdxÞ ¼

Yn�1

j¼k

βðs; x;TjÞFT�
s ðdxÞ: (11)

The drift term bTkþ1 is chosen in such a way that the process Lð:;TkÞ becomes a
martingale under the forward measure PTkþ1ðt

0

λðs;TkÞbTkþ1
s ds ¼ � 1

2

ðt
0

csλ
2ðs;TkÞds

�
ðt
0

ð
R

exλðs;TkÞ � 1� xλðs;TkÞ
� �

νTkþ1ðds; dxÞ: (12)

We propose the following choice for the functions bTkþ1 for all k 2 f1; :::; n� 1g

bTkþ1
s ¼ � 1

2 λðs;TkÞcs �
ð
R

exλðs;TkÞ�1
λðs;TkÞ � x

� �
FTkþ1
s ðdxÞ ð0 � s<TkÞ

bTkþ1
s ¼ 0 ðs � TkÞ:

8><>: (13)

The driving process LTkþ1 becomes

LTkþ1
t ¼ �

ðt
0

1
2
λðs;TkÞcs þ

ð
R

exλðs;TkÞ � 1
λðs;TkÞ � x

� �
FTkþ1
s ðdxÞ

0@ 1Adsþ
ðt
0

c
1
2
sdWTkþ1

s

þ
ðt
0

ð
R

xðμT��νTkþ1Þðds; dxÞ: (14)

Since Lðt;TkÞ is a PTkþ1 martingale 1þ δLðt;TkÞ is a PTkþ1 martingale as well, which

is up to the constant ð1þ δLð0;TkÞÞ�1 the density process

dPTk

dPTkþ1 F t

¼ 1þ δLðt;TkÞ
1þ δLð0;TkÞ ð0 � t < TkÞ:

����
By iterating this, we get
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dPTkþ1

dPT�
¼
Yn�1

j¼kþ1

1þ δLðTkþ1;TjÞ
1þ δLð0;TjÞ

¼ Bð0;T�Þ
Bð0;Tkþ1Þ

Yn�1

j¼kþ1

ð1þ δLðTkþ1;TjÞÞ:

Applying iteratively Proposition III.3.8 of Jacod and Shiryaev (1987) – which is a
very fundamental result for interest rate modelling – we see that its restriction to F t

dPTkþ1

dPT�

����
F t

¼ Bð0;T�Þ
Bð0;Tkþ1Þ

Yn�1

j¼kþ1

ð1þ δLðt;TjÞÞ
ð0� t<Tkþ1Þ

(15)

is a PT� martingale.
As has already been pointed out in Eberlein (2014) as a consequence of representations of

the type (Equation (15)) of arbitrary quotients Bðt;TjÞ
Bðt;TkÞ as products of quotients with successive

maturities Tk and Tkþ1, Proposition III.3.8 of Jacod and Shiryaev (1987) guarantees also that

properly discounted zero coupon bond prices Bðt;TjÞ
Bðt;TkÞ arePTk martingales. This means that the

LIBOR approach as developed above creates an arbitrage-free model.
With respect to numerical aspects and the application of the Malliavin calculus in

Section 3, it is important to note that already with the first measure change one looses the
property that the driving processes LTkþ1 are time–inhomogeneous Lévy processes. This is
because the coefficients αðs;TkÞ and βðs; x;TkÞ contain the random quantity Lðs-;TkÞ. The
simplest approach to preserve this property is to replace ,ðs-;TkÞ by its deterministic
starting value. Henceforth, we will make this assumption in the following sections.

Assumption 2.5 (Frozen drift approximation). For each k and all s belonging to
½0;Tk�, we assume the approximation

,ðs�;TkÞ ’ ,ð0;TkÞ ¼ δLð0;TkÞ
1þ δLð0;TkÞ :

3. Sensitivity analysis

Following Eberlein and Kluge (2005) and Eberlein (2014), we shall consider valuation
formulas for standard interest rate derivatives such as caps, floors and swaptions in the
LLM. These formulas are computationally efficient. Since floor prices can be derived
from the corresponding put-call-parity relation, we concentrate on caps. A cap consists
of a sequence of caplets which are call options on LIBOR rates. The pay-off of a caplet
with strike rate K and maturity Tk is

δ LðTk;TkÞ � Kð Þþ;

where the payment is made at time point Tkþ1. Its time-0-price, denoted bygCplt0ðTk;K; δÞ, is given by
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gCplt0ðTk;K; δÞ ¼ Bð0;Tkþ1ÞδEPTkþ1
LðTk;TkÞ � Kð Þþ
 �

: (16)

3.1. Greeks computed by the Malliavin approach

In this part, we present an application of the Malliavin calculus to the computation of
Greeks within the LLM. We refer to the literature, for example, Di Nunno, Øksendal,
and Proske (2009) and Nualart (2006) for details on the theoretical aspects of Malliavin
calculus, but we mainly follow Fournié et al. (1999) and Yablonski (2008) (see the
Appendix) for the presentation of the mathematical results used in the sequel. The
forward LIBOR rates Lðt;TkÞ under the forward measures PTkþ1 can be written as
stochastic exponentials. Expressed as a differential, we get the PTkþ1 dynamics in the
form

dLðt;TkÞ ¼ Lðt�;TkÞ c
1
2
tλðt;TkÞdWTkþ1

t þ
ð
R

ðeλðt;TkÞx � 1ÞðμT��νTkþ1Þðdt; dxÞ
0@ 1A:

(17)

As in the classical Malliavin calculus, we are able to associate the solution of
Equation (17) with the process Yðt;TkÞ :¼ @Lðt;TkÞ

@Lð0;TkÞ , called the first variation process of

Lðt;TkÞ. By applying Proposition A.10, the following proposition provides an expres-
sion for the Malliavin derivative operator Dr;0 when applied to the LIBOR rates
Lðt;TkÞ. This expression is simpler than the original one which follows from
Theorem A.9.

Proposition 3.1. Let Lðt;TkÞt2½0;T�� be the solution of Equation (17). Then
Lðt;TkÞ 2 D

1;2, which is the domain of the derivative operator in L2ðΩÞ. The
Malliavin derivative satisfies the following equation:

Dr;0Lðt;TkÞ ¼ Yðt;TkÞYðr�;TkÞ�1Lðr�;TkÞc
1
2
rλðr;TkÞ1fr� tg a:e:: (18)

3.1.1. Variation in the initial condition
In this section, we provide an expression for the Delta, the partial derivative of the
expectation gCplt0ðTk;K; δÞ with respect to the initial condition Lð0;TkÞ given by

ΔðLð0;TkÞÞ ¼ @gCplt0ðTk;K; δÞ
@Lð0;TkÞ:

For a convenient representation of this expectation, we introduce two processes
which turn out to be PT� martingales (see Equation (15))

M1
t ¼

Yn�1

j¼kþ1

ð1þ δLðt;TjÞÞ Lðt;TkÞ
K

ð0 � t<TkÞ (19)
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and

M2
t ¼

Yn�1

j¼kþ1

ð1þ δLðt;TjÞÞ ð0 � t<Tkþ1Þ: (20)

As mentioned in Fournié et al. (1999), let us define the set

eTk ¼ hk 2 L2ð½0;Tk�Þ :
ðTk

0
hkðuÞdu ¼ 1

( )
:

For all t 2 ½0;T��, define

f kðtÞ ¼
Xn�1

j¼kþ1

,ð0;TjÞλðt;TjÞ: (21)

Proposition 3.2. For all functions hk 2 eTk, we have

ΔðLð0;TkÞÞ ¼ δKBð0;T�Þ
Lð0;TkÞ EPT�

�
M1

Tk
�M2

Tk

� �þ
�

ðTk

0

hkðuÞ
c
1
2
uλðu;TkÞ

dWT�
u �

ðTk

0

hkðuÞf kðuÞ
λðu;TkÞ du

 !

:

(22)

Proof. Following the results of Fournié et al. (1999) and Petrou (2008) concerning the
application of Malliavin calculus to finance, we consider now a more general pay-off of
the form HðLðTk;TkÞÞ such that H : R ! R is a locally integrable function satisfying

EPTkþ1
HðLðTk;TkÞÞ2

 �

<1:

First, assume that H is a continuously differentiable function with compact support.
Then we can differentiate inside the expectation1 and we get

ΔHðLð0;TkÞÞ :¼
@EPTkþ1

HðLðTk;TkÞÞ½ �
@Lð0;TkÞ

¼ EPTkþ1
H0ðLðTk;TkÞÞ @LðTk;TkÞ

@Lð0;TkÞ
� 


¼ EPTkþ1
H0ðLðTk;TkÞÞYðTk;TkÞ½ �:

For any hk 2 eTk and using Proposition 3.1, we find

YðTk;TkÞ ¼
ðTk

0
hkðuÞDu;0LðTk;TkÞ Yðu�;TkÞ

Lðu�;TkÞc
1
2
uλðu;TkÞ

du:
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From the chain rule Proposition A.5 we find

ΔHðLð0;TkÞÞ ¼ EPTkþ1

ðTk

0

H0ðLðTk;TkÞÞhkðuÞDu;0LðTk;TkÞ Yðu�;TkÞ
Lðu�;TkÞc

1
2
uλðu;TkÞ

du

24 35
¼ EPTkþ1

ðTk

0

Du;0HðLðTk;TkÞÞhkðuÞ Yðu�;TkÞ
Lðu�;TkÞc

1
2
uλðu;TkÞ

du

24 35
¼ EPTkþ1

ðTk

0

ð
R

Du;xHðLðTk;TkÞÞhkðuÞ Yðu�;TkÞ
Lðu�;TkÞc

1
2
uλðu;TkÞ

duδ0ðdxÞ
24 35:

By the definition of the Skorohod integral (see Section A.5), we reach

ΔHðLð0;TkÞÞ ¼ EPTkþ1
HðLðTk;TkÞÞδ hkð:Þ Yð:;TkÞ

Lð:;TkÞc12:λð:;TkÞ
δ0ðxÞ

 !" #
:

However, hkðuÞ Yðu�;TkÞ
Lðu�;TkÞc

1
2
uλðu;TkÞ

� �
0�u�Tk

is a predictable process, thus the Skorohod

integral coincides with the Itô stochastic integral and we get

ΔHðLð0;TkÞÞ ¼ EPTkþ1
HðLðTk;TkÞÞ

ðTk

0

hkðuÞ Yðu�;TkÞ
Lðu�;TkÞc

1
2
uλðu;TkÞ

dWTkþ1
u

24 35: (23)

By Lemma 12.28, p. 208, in Di Nunno, Øksendal, and Proske (2009), the result
(Equation (23)) holds for any locally integrable function H such that

EPTkþ1
HðLðTk;TkÞÞ2

 �

<1:

In particular, if one takes HðLðTk;TkÞÞ ¼ Bð0;Tkþ1ÞδðLðTk;TkÞ � KÞþ, we can

express the derivatives of the expectation gCplt0ðTk;K; δÞ with respect to the initial
condition Lð0;TkÞ in the form of a weighted expectation as follows:

ΔðLð0;TkÞÞ ¼ δBð0;Tkþ1ÞEPTkþ1
LðTk;TkÞ � Kð Þþ

ðTk

0

hkðuÞYðu�;TkÞ
c
1
2
uλðu;TkÞLðu�;TkÞ

dWTkþ1
u

24 35:
We show easily that Yðu�;TkÞ ¼ Lðu�;TkÞ

Lð0;TkÞ and we reach

ΔðLð0;TkÞÞ ¼ δBð0;Tkþ1Þ
Lð0;TkÞ EPTkþ1

LðTk;TkÞ � Kð Þþ
ðTk

0

hkðuÞ
c
1
2
uλðu;TkÞ

dWTkþ1
u

24 35:
In accordance with Equation (8) and taking the frozen drift approximation

(Assumption 2.5) into consideration, we can write for all k 2 f1; :::; n� 2g
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WTkþ1
t ¼ WT�

t �
ðt
0
c
1
2
sf kðsÞds:

One can easily show that

K M1
Tk
�M2

Tk

� �þ
¼ LðTk;TkÞ � Kð Þþ

Yn�1

j¼kþ1

ð1þ δLðTk;TjÞÞ:
(24)

By making a measure change using the fact that

dPTkþ1

dPT�

����
FTk

¼ Bð0;T�Þ
Bð0;Tkþ1Þ

Yn�1

j¼kþ1

ð1þ δLðTk;TjÞÞ

we end up with

ΔðLð0;TkÞÞ ¼ δKBð0;T�Þ
Lð0;TkÞ EPT� M1

Tk
�M2

Tk

� �þ ðTk

0

hkðuÞ
c
1
2
uλðu;TkÞ

dWTkþ1
u

24 35
¼ δKBð0;T�Þ

Lð0;TkÞ EPT�

�
M1

Tk
�M2

Tk

� �þ
�

ðTk

0

hkðuÞ
c
1
2
uλðu;TkÞ

dWT�
u �

ðTk

0

hkðuÞf kðuÞ
λðu;TkÞ du

 !#
:

□
Remark 3.3. The function hk used in this formula allows a lot of flexibility. An

obvious choice which simplifies the formula considerably is hkðuÞ ¼ λðu;TkÞ
�Tk0 λðu;TkÞdu

:

3.2. Greeks computed by the approximative Fourier-based valuation method

Making use of Equation (24), we can write the time-0-price gCplt0ðTk;K; δÞ as

gCplt0ðTk;K; δÞ ¼ δKBð0;T�ÞEPT� M1
Tk
�M2

Tk

� �þ� 

: (25)

Substituting Lðt;TjÞ in Equations (19) and (20) by its explicit form (Equation (6))
and using the fact that LTjþ1 and LT

�
differ only by a drift term, we get the

representation

M1
t ¼

Yn�1

j¼kþ1

1þ δLð0;TjÞ exp
ðt
0
λðs;TjÞdLT�

s þ dðt;TjÞ
� �� 


� Lð0;TkÞ
K

exp

ðt
0
λðs;TkÞdLT�

s þ dðt;TkÞ
� �

(26)

and
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M2
t ¼

Yn�1

j¼kþ1

1þ δLð0;TjÞ exp
ðt
0
λðs;TjÞdLT�

s þ dðt;TjÞ
� �� �

: (27)

For small values jxj and ε > 0, we use now the approximative relation

1þ ε expðxÞ � ð1þ εÞ exp ε

1þ ε
x

� �
: (28)

As a consequence, we can approximate

1þ δLð0;TjÞ exp
ðt
0
λðs;TjÞdLT�

s þ dðt;TjÞ
� �

by

ð1þ δLð0;TjÞÞ exp
ðt
0
,ð0;TjÞλðs;TjÞdLT�

s þ ,ð0;TjÞdðt;TjÞ
� �

:

ðM1
t Þ0� t�Tk

and ðM2
t Þ0� t�Tkþ1

are PT� martingales. We replace now the factors in

Equations (26) and (27) by the approximating terms and determine appropriate
exponential compensators D1 and D2 such that we get again PT� martingales. The

resulting processes ð eM1
t Þ0� t�Tk

and ð eM2
t Þ0� t�Tkþ1

can explicitly be written in the

form

eM1
t ¼

Lð0;TkÞ
K

Bð0;Tkþ1Þ
Bð0;T�Þ exp

ðt
0
f kðsÞdLT�

s þ
ðt
0
λðs;TkÞdLT�

s þ D1
t

� �

and

eM2
t ¼

Bð0;Tkþ1Þ
Bð0;T�Þ exp

ðt
0
f kðsÞdLT�

s þ D2
t

� �
;

where

D1
t ¼ ln EPT� exp

ðt
0

f kðsÞdLT�
s þ

ðt
0

λðs;TkÞdLT�
s

0@ 1A24 35�1
0B@

1CA
and

D2
t ¼ ln EPT� exp

ðt
0

f kðsÞdLT�
s

0@ 1A24 35�1
0B@

1CA:

With the new processes we get an approximative formula for the caplet price
(Equation (25))
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gCplt0ðTk;K; δÞ � δKBð0;T�ÞEPT�
eM1
Tk
� eM2

Tk

� �þ� 

: (29)

Define

gCplt0ðTk;K; δÞ :¼ δKBð0;T�ÞEPT�
eM1
Tk
� eM2

Tk

� �þ� 

; (30)

and

eΔðLð0;TkÞÞ :¼ @gCplt0ðTk;K; δÞ
@Lð0;TkÞ :

Then

gCplt0ðTk;K; δÞ � gCplt0ðTk;K; δÞ (31)

ΔðLð0;TkÞÞ � eΔðLð0;TkÞÞ: (32)

Since eM1 and eM2 are PT� martingales, we can introduce a ePTkþ1 forward measure on
ðΩ;FTkþ1Þ by setting

dePTkþ1

dPT�
¼
eM2
Tkþ1eM2
0

¼ exp

ðTkþ1

0

f kðsÞdLT�
s þ D2

Tkþ1

0@ 1A:

By the semimartingale version of Girsanov’s theorem (see Jacod and Shiryaev (1987))

eWTkþ1
t :¼ WT�

t �
ðt
0
c
1
2
sf kðsÞds (33)

is a ePTkþ1 standard Brownian motion and

eνTkþ1ðdt; dxÞ :¼ exp f kðsÞx� �
νT

� ðdt; dxÞ (34)

is the ePTkþ1 compensator of μT
�
. Expressing Equation (30) in terms of the new measure,

we get

gCplt0ðTk;K; δÞ ¼ δKBð0;Tkþ1ÞE~PTkþ1
expðXTkÞ � 1ð Þþ
 �

; (35)

where X is defined as the process

Xt ¼ ln
eM1
teM2
t

¼ ln
Lð0;TkÞ

K

� �
þ
ðt
0
λðs;TkÞdLT�

s þ D1
t � D2

t :

Proposition 3.4. Suppose R 2 ð1; 1þ εÞ such that the moment-generating function of

XTk with respect to ePTkþ1 is finite, then
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~ΔðLð0;TkÞÞ ¼ δ

2π
Bð0;Tkþ1Þ

ð
R

Lð0;TkÞ
K

� ��1þRþiu

exp

	 ðTk

0

�ð
R

�
exf

kðsÞ exðRþiuÞλðs;TkÞ � 1
� �*

� ðRþ iuÞexf kðsÞ
�
exλðs;TkÞ � 1

�

FT�
s ðdxÞ

þ 1
2
csðλðs;TkÞÞ2ðRþ iuÞð�1þ Rþ iuÞ

�
ds

�
1

�1þ Rþ iu

�
du: (36)

Proof. Using the Fourier-based valuation approach (for details, see Theorem 2.7 in
Eberlein, Glau, and Papapantoleon (2010)), we get the following explicit integral
representation for Equation (35). Suppose R 2 ð1; 1þ εÞ such that the moment-

generating function of XTk with respect to ePTkþ1 is finite at R, i.e. eMXTk
ðRÞ < 1,

then

gCplt0 Tk;K; δð Þ ¼ Kδ
2π

B 0;Tkþ1ð Þ
ð
R

eMXTk Rþ iuð Þ 1
�R� iuð Þ 1� R� iuð Þ du

where the moment-generating function eMXTk
is given by (for details, we refer to

Eberlein and Kluge (2005))

eMXTk
ðzÞ ¼ Lð0;TkÞ

K

� �z

� exp

�ðTk

0

�
θs f kðsÞ þ zλðs;TkÞ
� �� zθs f kðsÞ þ λðs;TkÞ

� �
(37)

þ ðz � 1Þθsðf kðsÞÞ


ds

�

for all z 2 C with ReðzÞ ¼ R, with cumulant function

θsðzÞ ¼ zbT
�

s þ 1
2
csz

2 þ
ð
R

ezx � 1� zxð ÞFT�
s ðdxÞ (38)

and

f kðsÞ ¼
Xn�1

j¼kþ1

δLð0;TjÞ
1þ δLð0;TjÞ λðs;TjÞ: (39)

Taking into account the choice of the drift coefficient in Equation (13), the cumulant
function θs and the moment-generating function eMXTk

, respectively, become

θsðzÞ ¼ z

ð
R

exz � 1
z

� exλðs;Tn�1Þ � 1
λðs;Tn�1Þ

� �
FT

�
s ðdxÞ þ 1

2
csz z � λðs;Tn�1Þð Þ;
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~MXTk
ðzÞ ¼ Lð0;TkÞ

K

� �z

exp

	 ðTk

0

�ð
R

½exf kðsÞ exzλðs;TkÞ � 1
� �

(40)

�zexf
kðsÞ exλðs;TkÞ � 1
� �i

FT�
s ðdxÞ

þ 1
2
csðλðs;TkÞÞ2zðz � 1Þ

�
ds

�
:

Hence, the approximative valuation formula can be written as

fCplt0ðTk;K; δÞ ¼ Kδ
2π

Bð0;Tkþ1Þ
ð
R

Lð0;TkÞ
K

� �Rþiu

exp

	 ðTk

0

�ð
R

½exf kðsÞ exðRþiuÞλðs;TkÞ � 1
� �*

�ðRþ iuÞexf kðsÞ exλðs;TkÞ � 1
� �i

FT�
s ðdxÞ

þ 1
2
csðλðs;TkÞÞ2ðRþ iuÞð�1þ Rþ iuÞ

�
ds

�

� 1
ð�R� iuÞð1� R� iuÞ

�
du:

We conclude that the Delta computed using the approximative Fourier-based valua-
tion method is given by

~ΔðLð0;TkÞÞ ¼ δ

2π
Bð0;Tkþ1Þ

ð
R

Lð0;TkÞ
K

� ��1þRþiu

exp

	 ðTk

0

�ð
R

�
exf

kðsÞ exðRþiuÞλðs;TkÞ � 1
� �*

� ðRþ iuÞexf kðsÞ exλðs;TkÞ � 1
� �


FT
�

s ðdxÞ

þ 1
2
csðλðs;TkÞÞ2ðRþ iuÞð�1þ Rþ iuÞ

�
ds

�
1

�1þ Rþ iu

�
du: (41)

□
Example 3.5 (Variance Gamma (VG) component) We suppose that the jump compo-
nent of the driving process LT

�
given in Equation (3) is described by a Variance Gamma

process with the Lévy density v given by

νðdxÞ ¼ FVGðxÞdx ¼ 1
ηjxj exp

θ

σ2
x� 1

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
η
þ θ2

σ2

s
jxj

0@ 1Adx;
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where ðθ; σ; ηÞ are the parameters such that θ 2 R , σ > 0 and η > 0. A

more convenient parametrization is achieved by setting B ¼ θ
σ2 and C ¼ 1

σ

ffiffiffiffiffiffiffiffiffiffiffi
2
η þ θ2

σ2

q
.

Then

FVGðxÞ ¼ exp Bx � Cjxjð Þ
ηjxj : (42)

Using Frullani’s integral (see, for details, Ostrowski (1949)), we can show that, if

α 2 C and β 2 C such that ReðαÞ> 0, ReðβÞ> 0 and β
α 2 CnR� where

R
� ¼� �1; 0�, then

Iðα;βÞ :¼
ðþ1

0

e�αx � e�βx

x
dx ¼ log

β

α

� �
(43)

where log is the principal value of the logarithm. Exploiting this formula and
setting

αkðs; zÞ ¼ � zλðs;TkÞ þ f kðsÞ þ B� C
� �

; (44)

βkðsÞ ¼ � f kðsÞ þ B� C
� �

(45)

a tedious computation shows that the moment-generating function becomes

eMXTk
ðzÞ ¼ Lð0;TkÞ

K

� �z

� exp
1
η

ðTk

0
log

βkðsÞ 2C � βkðsÞ
� �

αkðs; zÞ 2C � αkðs; zÞð Þ
� �

ds

 !

� exp � z
η

ðTk

0
log

βkðsÞ 2C � βkðsÞ
� �

βkðsÞ � λðs;TkÞ
� �

2C � βkðsÞ þ λðs;TkÞ
� � !

ds

 !

� exp

ðTk

0

cs
2
λ2ðs;TkÞzðz � 1Þds

 !
:

Plugging this in the approximative valuation formula, we get

fCplt0ðTk;K;δÞ¼Kδ
2π

Bð0;Tkþ1Þ
ð
R

Lð0;TkÞ
K

� �Rþiu

�exp
1
η

ðTk

0
log

βkðsÞ 2C�βkðsÞ
� �

αkðs;Rþ iuÞ 2C�αkðs;Rþ iuÞð Þ
� �

ds

 !

�exp �Rþ iu
η

ðTk

0
log

βkðsÞ 2C�βkðsÞ
� �

βkðsÞ�λðs;TkÞ
� �

2C�βkðsÞþλðs;TkÞ
� � !

ds

 !

�exp

ðTk

0

cs
2
λ2ðs;TkÞðRþ iuÞð�1þRþ iuÞds

 !
1

ð�R� iuÞð1�R� iuÞdu:
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The approximate Delta is therefore given by

~ΔðLð0;TkÞÞ ¼ δ

2π
Bð0;Tkþ1Þ

ð
R

Lð0;TkÞ
K

� ��1þRþiu

� exp
1
η

ðTk

0
log

βkðsÞ 2C � βkðsÞ
� �

αkðs;Rþ iuÞ 2C � αkðs;Rþ iuÞð Þ
� �

ds

 !

� exp �Rþ iu
η

ðTk

0
log

βkðsÞ 2C � βkðsÞ
� �

βkðsÞ � λðs;TkÞ
� �

2C � βkðsÞ þ λðs;TkÞ
� � !

ds

 !

� exp

ðTk

0

cs
2
λ2ðs;TkÞðRþ iuÞð�1þ Rþ iuÞds

 !
1

�1þ Rþ iu
du:

For the approximate Gamma, one gets the form

eΓðLð0;TkÞÞ :¼ @2gCplt0ðTk;K; δÞ
@2Lð0;TkÞ ¼ δ

2πK
Bð0;Tkþ1Þ

ð
R

Lð0;TkÞ
K

� ��2þRþiu

� exp
1
η

ðTk

0
log

βkðsÞ 2C � βkðsÞ
� �

αkðs;Rþ iuÞ 2C � αkðs;Rþ iuÞð Þ
� �

ds

 !

� exp �Rþ iu
η

ðTk

0
log

βkðsÞ 2C � βkðsÞ
� �

βkðsÞ � λðs;TkÞ
� �

2C � βkðsÞ þ λðs;TkÞ
� � !

ds

 !

� exp

ðTk

0

cs
2
λ2ðs;TkÞðRþ iuÞð�1þ Rþ iuÞds

 !
du:

Example 3.6. (Non-homogeneous Gamma (IGP) component) We suppose that the jump
component of the driving process LT

�
given in Equation (3) is described by an inhomo-

geneous Gamma process (IGP), which is introduced by Berman (1981) as follows

Definition 3.7. Let AðtÞ be a non-decreasing function from R
þ ! R

þ and B> 0. A
Gamma process with shape function A and scale parameter B is a stochastic process
ðLtÞt�0 on R

þ such that

(1) L0 = 0,
(2) Independent increments: for every increasing sequence of times t0; :::; tn, the

random variables Lt0 ; Lt1 � Lt0 ; :::; Ltn � Ltn�1 are independent,
(3) For 0 � s< t, the distribution of the random variable Lt � Ls is the Gamma

distribution Γ AðtÞ � AðsÞ;Bð Þ.

Remark 3.8. If the shape function A is differentiable, we can write the shape function
A in the form
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AðtÞ ¼
ðt
0

_AðsÞdsþ Að0Þ

for all t 2 R
þ where _A denotes the derivative of A.

In this case, the Lévy measure of the Gamma process L is given by

FGs ðdxÞ ¼ _AðsÞ e
�Bx

x
1x > 0dx:

The approximate Delta is now

eΔðLð0;TkÞÞ ¼ @gCplt0ðTk;K; δÞ
@Lð0;TkÞ

¼ δ

2π
Bð0;Tkþ1Þ

ð
R

Lð0;TkÞ
K

� ��1þRþiu
*

� exp

ðTk

0

_AðsÞ log �f kðsÞ þ B
�ðRþ iuÞλðs;TkÞ � f kðsÞ þ B

� ��(

� _AðsÞðRþ iuÞ log �f kðsÞ þ B
�λðs;TkÞ � f kðsÞ þ B

� �

þ 1
2
csðλðs;TkÞÞ2ðRþ iuÞð�1þ Rþ iuÞ

�
ds

�

� 1
�1þ Rþ iu

�
du

whereas the approximate Gamma is

eΓðLð0;TkÞÞ ¼ @2gCplt0ðTk;K; δÞ
@2Lð0;TkÞ

¼ δ

2πK
Bð0;Tkþ1Þ

ð
R

Lð0;TkÞ
K

� ��2þRþiu
*

� exp

ðTk

0

_AðsÞ log �f kðsÞ þ B
�ðRþ iuÞλðs;TkÞ � f kðsÞ þ B

� ��(

� _AðsÞðRþ iuÞ log �f kðsÞ þ B
�λðs;TkÞ � f kðsÞ þ B

� �
þ 1
2
csðλðs;TkÞÞ2ðRþ iuÞð�1þ Rþ iuÞ

�
ds

��
du:
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Note

1. See Fournié et al. (1999) for details
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Appendix Malliavin calculus for time–inhomogeneous Lévy processes

For the ease of reading, we present in this appendix the Malliavin derivative D as well as the
Skorohod integral δ for the class of processes which we use. Yablonski (2008) studied these
notions in a slightly more general context, namely for processes with conditionally independent
increments. Conditioning is not relevant in our case. The σ field H considered by Yablonski is
trivial for time–inhomogeneous Lévy processes.

A.1 Isonormal Lévy process (ILP)
Let μ and v be σ finite measures without atoms on the measurable spaces ðT;AÞ and ðT� X0;BÞ,
respectively. Define a new measure

πðdt; dzÞ :¼ μðdtÞδΘðdzÞ þ νðdt; dzÞ (A1)
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on a measurable space ðT� X;GÞ, where X ¼ X0 [ fΘg, G ¼ σðA � fΘg;BÞ and δΘðdzÞ is the
measure which gives mass one to the point Θ. Consider the Hilbert space H ¼ L2ðT� X;G; πÞ
and assume that this space is separable.
Definition A.1. We say that a stochastic process L ¼ fLðhÞ; h 2 Hg defined on a complete
probability space ðΩ;F ;PÞ is an isonormal Lévy process (or Lévy process on H) if the following
conditions are satisfied

(1) The mapping h ! LðhÞ is linear;
(2) E½eixLðhÞ� ¼ expðΨðx; hÞÞ, where

Ψðx; hÞ ¼
ð
T�X

ðeixhðt;zÞ � 1� ixhðt; zÞÞ1X0ðzÞ �
1
2
x2h2ðt; zÞ1ΘðzÞ

� �
πðdt; dzÞ:

Remark A.2. It is easy to show that E½LðhÞ� ¼ 0 and E½LðhÞLðgÞ� ¼ hh; giH for all h; g 2 H.

A.2 The derivative operator
In this section, we introduce the derivative operator D which coincides with the classical
Malliavin derivative in the Gaussian case (see, e.g., Nualart (2006)) and with the difference
operator defined in Nualart and Vives (1990) and Picard (1996) in the Poisson case.

Let S denote the class of smooth random variables, that is the class of random variables � of
the form

� ¼ f ðLðh1Þ; :::; LðhnÞÞ; (A2)

where f belongs to C1
b ðRnÞ; h1; . . . ; hn are in H, and n � 1. The set S is dense in LpðΩÞ for any

p � 1. We refer for the following definition to Yablonski (2008).

Definition A.3. The stochastic derivative of a smooth random variable of the form (Equation (A2))
is the H-valued random variable D� ¼ fDt;x�; ðt; xÞ 2 T � Xg given by

Dt;x� ¼
Xn
k¼1

@f
@yk

ðLðh1Þ; :::; LðhnÞÞhkðt; xÞ1ΘðxÞ (A3)

þ f ðLðh1Þ þ h1ðt; xÞ; . . . ; LðhnÞ þ hnðt; xÞÞð

�f ðLðh1Þ; . . . ; LðhnÞÞÞ1X0ðxÞ:

We will consider D� as an element of L2ðT � X �ΩÞ ffi L2ðΩ;HÞ; namely D� is a random
process indexed by the parameter space T � X.

(1) If the measure v is zero or hkðt; xÞ ¼ 0, k ¼ 1; . . . ; n when x � Θ then D� coincides with
the Malliavin derivative (see, e.g., Nualart (2006)).

(2) If the measure μ is zero or hkðt; xÞ ¼ 0, k ¼ 1; . . . ; n when x ¼ Θ then D� coincides with
the difference operator (see, e.g., Picard (1996)).

A.3 Integration-by-parts formula
Theorem A.4. Suppose that � and η are smooth random variables and h 2 H. Then

(1) E½�LðhÞ� ¼ E½ D�; hh iH�;
(2) E½�ηLðhÞ� ¼ E½η D�; hh iH� þ E½� Dη; hh iH� þ E½ Dη; h1X0D�h iH�:

As a consequence of the above theorem we obtain the following result
• The expression of the derivative D� given in Equation (A3) does not depend on the
particular representation of � in Equation (A2).

• The operator D is closable as an operator from L2ðΩÞ to L2ðΩ;HÞ.
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A.4 The chain rule
We will denote the closure of D again by D and its domain in L2ðΩÞ by D

1;2.
Proposition A.5 (see Yablonski (2008), Proposition 4.8) Suppose F ¼ ðF1; F2; . . . ; FnÞ is a
random vector whose components belong to the space D

1;2. Let ϕ 2 C1ðRnÞ be a function with
bounded partial derivatives such that ϕðFÞ 2 L2ðΩÞ. Then ϕðFÞ 2 D

1;2 and

Dt;xϕðFÞ ¼
Pn
i¼1

@ϕ
@xi

ðFÞDt;ΘFi x ¼ Θ

ϕðF1 þ Dt;xF1; . . . ; Fn þ Dt;xFnÞ � ϕðF1; . . . ; FnÞ x � Θ

8<:
A.5 The Skorohod integral
In this section, we consider the adjoint of the operator D which coincides with the Skorohod
integral (see Skorokhod (1976)) in the Gaussian case and with the extended stochastic integral
introduced by Kabanov (see Kabanov (1975)) in the pure jump Lévy case. See also Benth et al.
(2003) and Lokka and Benth (2004). Consequently, it can be considered as a generalization of the
stochastic integral.

We recall that the derivative operator D is a closed and unbounded operator defined on the
dense subset D1;2 of L2ðΩÞ with values in L2ðΩ;HÞ.

We denote by δ the adjoint of the operator D and we call it the Skorohod integral. The
operator δ is defined on a subset Domδ of L2ðΩ;HÞ with values in L2ðΩÞ, where Domδ is the set
of processes u 2 L2ðΩ;HÞ such that

E

ð
T�X

Dt;zFuðt; zÞπðdt; dzÞ
� 
���� ���� � c Fk kL2ðΩÞ

for all F 2 D
1;2 and where c is some constant depending on u. If u 2 Domδ, then δðuÞ is the

element of L2ðΩÞ such that

E FδðuÞ½ � ¼ E

ð
T�X

Dt;zFuðt; zÞπðdt; dzÞ
� 


(A4)

for any F 2 D
1;2. Let us note that δ is a closed and unbounded operator on Domδ.

A.6 Commutativity relationship between the derivative and divergence operators
Let L1;2 denote the class of processes u 2 L2ðT � X �ΩÞ such that uðt; xÞ 2 D

1;2 for almost all
ðt; xÞ, and such that there exists a measurable version of the multi–process Dt;xuðs; yÞ satisfying

E

ð
T�X

ð
T�X

ðDt;xuðs; yÞÞ2πðdt; dxÞπðds; dyÞ
� 


<1:

Proposition A.6. Suppose that u 2 L
1;2 such that for almost all ðt; zÞ 2 T � X the two-parameter

process Dt;zuðs; yÞ
� �

ðs;yÞ2T�X is Skorohod integrable, and such that there exists a version of the

process δðDt;zuð:; :ÞÞ
� �

ðt;zÞ2T�X which belongs to L2ðT � X �ΩÞ. Then δðuÞ 2 D
1;2 and we have

Dt;zδðuÞ ¼ uðt; zÞ þ δðDt;zuð:; :ÞÞ: (A5)

A.7 The Itô stochastic integral as a particular case of the Skorohod integral
Let W ¼ fWt; 0 � t � Tg be a d-dimensional standard Brownian motion, ~N a compensated
Poisson random measure on ½0;T� � R

dn 0f g with compensator νðdt; dxÞ ¼ βtðdxÞdt, where

ðβtÞt2½0;T� is a family of Lévy measures satisfying

ð0
T

ð
R

d

ðjxj2 ^ 1ÞβtðdxÞ

0B@
1CAdt < 1. For each t 2

½0;T� denote by F t the σ algebra generated by the random variables
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Wi
s;
~Nðð0; s� � AÞ; 0 � s � t; i ¼ 1; . . . ; d;A 2 BðRdn 0f gÞ; sup

0� s� t
βsðAÞ < 1

	 �
and the null sets of F . We denote by L2p the subset of L2ðΩ;HÞ formed by the ðF tÞ predictable
processes.
Proposition A.7 L2p 
 Domδ, and the restriction of the operator δ to the space L2p coincides with
the usual stochastic integral, that is

δðuÞ ¼
Xd
i¼1

ðT
0
uiðt; 0ÞdWi

t þ
ðT
0

ð
R

dnf0g
uðt; xÞ~Nðdt; dxÞ: (A6)

A.8 Regularity of solutions of SDEs driven by time–inhomogeneous Lévy processes
We focus on a class of models in which the price of the underlying asset is given by the following
stochastic differential equation (see Di Nunno, Øksendal, and Proske (2009) and Petrou (2008)
for details)

dSt ¼ bðt; St�Þdt þ σðt; St�ÞdWt þ
ð
R0

φðt; St�; zÞ~Nðdt; dzÞ; (A7)

S0 ¼ x

where x 2 R
d, fWt; 0 � t � Tg is a m-dimensional standard Brownian motion, ~N is a com-

pensated Poisson random measure on ½0;T� � R0 with compensator νtðdzÞdt. The coefficients
b : Rþ � R

d ! R
d, σ : Rþ � R

d ! R
d � R

m and φ : Rþ � R
d � R ! R

d � R are continuously
differentiable with bounded derivatives and the family of positive measures ðνtÞt2½0;T� satisfiesð 0
T

ð
R0

ðkzk2 ^ 1ÞνtðdzÞ
� �

dt<1 and νtðf0gÞ ¼ 0. The coefficients are assumed to satisfy the

following linear growth condition

kbðt; xÞk2 þ kσðt; xÞk2 þ
ð
R0

kφðt; x; zÞk2νtðdzÞ � Cð1þ kxk2Þ;

for all t 2 ½0;T�, x 2 R
d where C is a positive constant.

Furthermore we suppose that there exists a function ρ : R ! R with

sup
0� t�T

ð
R0

jρðzÞj2νtðdzÞ<1; (A8)

and a positive constant K such that

k φðt; x; zÞ � φðt; y; zÞ k� KjρðzÞj k x� y k; (A9)

for all t 2 ½0;T�, x; y 2 R
d and z 2 R0. Similarly to the homogeneous case, see more details on

page 334 in Di Nunno, Øksendal, and Proske (2009), we have the following lemma

Lemma A.8. Under the above conditions, there exists a unique solution ðStÞt2½0;T� for Equation
(A7). Moreover, there exists a positive constant C0 such that

E sup
0� t�T

jStj2
" #

<C0:

In the sequel, we provide a theorem which proves that under specific conditions the solution of a
stochastic differential equation belongs to the domain D

1;2. For details, we refer to Eddahbi and
Lalaoui Ben Cherif (2016) and Di Nunno, Øksendal, and Proske (2009).
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Theorem A.9. Let ðStÞt2½0;T� be the solution of Equation (A7) and assume that the condition
(Equation (A8)) is satisfied. Then St 2 D

1;2 for all t 2 ½0;T� and we have

(1) The derivative Dr;0St satisfies the following linear equation

Dr;0St ¼
ðt
r

@b
@x

ðu; Su�ÞDr;0Su�duþ σðr; Sr�Þ þ
ðt
r

@σ

@x
ðu; Su�ÞDr;0Su�dWu

þ
ðt
r

ð
R0

@φ

@x
ðu; Su�; yÞDr;0Su� ~Nðdu; dyÞ

for 0 � r � t a.e. and Dr;0St ¼ 0 a.e. otherwise.

(2) For all z 2 R0 the derivative Dr;zSt satisfies the following linear equation

Dr;zSt ¼
ðt
r
Dr;zbðu; Su�Þduþ

ðt
r
Dr;zσðu; Su�ÞdWu þ φðr; Sr�; zÞ

þ
ðt
r

ð
R0

Dr;zφðu; Su�; yÞ~Nðdu; dyÞ

for 0 � r � t a.e. and Dr;zSt ¼ 0 a.e. otherwise.
Having in mind the applications in finance, we will also provide a specific expression for the

Wiener directional derivative of the solution. As in the classical Malliavin calculus, we are able to
associate the solution of Equation (A7) with the first variation process Yt :¼ @St

@x . We reach the
following proposition which provides a simpler expression for Dr;0St. For details, we refer to
Eddahbi and Lalaoui Ben Cherif (2016) and Di Nunno, Øksendal, and Proske (2009).

Proposition A.10. Let ðStÞt2½0;T� be the solution of Equation (A7). Then the derivative satisfies
the following equation

Dr;0St ¼ YtY
�1
r� σðr; Sr�Þ1fr� tg a:e:: (A10)
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