

Course Outline Template- second semester- /1441

Form B-I: Theoretical Course with Practical sessions						
Theoretical Part- Course Information						
Course Number:	Course Number: Sections:					
Faculty Responsible for Developing This Course Outline						
Male campus: 1/	Mohammad Alanazi	2A 68				
Course coordinator			Email	msanazi@ksu.edu.sa		
Course Type	Core Course	Compulsory	Elect	ive		
From Course and if in the long with this and ill and an arrangement of model the following.						

From Course specification (sent along with this email) review and rewrite if needed the following

(1) main purpose for this course

- 1. Learn the basics and applications of biotechnology
- 2. Understand genetic engineering and DNA cloning

(2) Course Learning Outcomes

- **1.** Knowledge: students will be able to define and understand biotechnology and recombinant DNA technology as well as the various applications and techniques involved in genetic engineering.
- **2.** Cognitive: students will be able to assess and choose from different techniques according to the research question.

(3) Course Assessment Methods:

- Faculty member is required to announce 40 out of 60 of student degree before the official date of withdrawn courses which is on **24 -3-1441**

Assessment Method	Weight	Aligned Course Learning Outcomes
Midterm exam	15%	Knowledge
Quizzes, homework, assignments	5%	Knowledge
practical	30%	Knowledge and
presentation	10%	Cognitive
Final comprehensive	40%	Knowledge and Cognitive

4) Topics to be	Covered	
Week	Topics	Reference
	 1-Introduction to biotechnology and its brief history, Biotechnology in research and industry 2- The central dogma of Molecular Biology: applications in Biotechnology 	Biotechnology, Clark, chapter 1: basics of biotechnology pages:2,8-29
	DNA-based techniques: Nucleic acid isolation protocols and plasmids preparation Southern Blots	Southern blots: Lehninger
	Polymerase chain reaction and applications Mutation detection methods DNA sequencing	Biotechnology, Clark, chapter 4: PCR and sequencing Chapter 16: examples of inherited defects and their detection methods, pages 467-473
	RNA-based techniques: Northern Blots Quantitative-RT-PCR Microarray	Biotechnology, Clark, chapter 8
	DNA cloning; types and applications; development of recombinant protein Restriction endonucleases & vectors	Lehninger Ch.9
	Principles and practices of initiation, cultivation, maintenance and preservation of animal and bacterial cultures. Preservation of continuous cell lines.	
	Transgenic animal and plant production; genetically modified plants and animals	Biotechnology, Clark, chapter 14: transgenic plants Chapter 15: transgenic animals
	Last date to drop a course or withdraw from the semester	
	Environmental biotechnology Industrial enzymes and their applications	Biotechnology, Clark, chapter 12:

	page	363
	bioremediation	
	chapter 13	

(5) References:

- 1- <u>Biotechnology 2nd Edition Authors: David Clark, Nanette Pazdernik</u> (2015)
 - 2- Lehninger Principles of Biochemistry, 7th edition, 2017

(6) Examination date	(7) Date of Reviewing examination results with students		
Midterm exam (29-7-1441)	7–8–1441		
(24-3-2020)	31–3–2020		
Students presentation	(26-8-1441; 19-4-2020)		
Final exam	7-9-1441 at 1:00 PM		

