
Flow Control

CSC215
Lecture

Outline

❖ Blocks and compound statements
❖ Conditional statements

○ if - statement
○ if-else - statement
○ switch - statement
○ ? : opertator
○ Nested conditional statements

❖ Repetitive statements
○ for - statement
○ while - statement
○ do-while - statement
○ Nested repetitive statements
○ Break and continue statements

❖ Unconditional jump: goto

Blocks and Compound Statements

❏ A simple statement ends in a semicolon: z = foo(x+y);

❏ Consider the multiple statements:
temp = x+y ;
z = foo (temp) ;
○ Curly braces – combine into compound statement/block
○ Block can substitute for simple statement
○ Compiled as a single unit
○ Variables can be declared inside
○ No semicolon at end

{
 int temp = x+y;
 z = foo(temp);
}

❏ Block can be empty {}

Blocks and Compound Statements

❏ Blocks nested inside each other
{
 int temp = x+y ;
 z = foo (temp) ;
 {
 float temp2 = x ∗y ;
 z += bar (temp2) ;
 }
}

❏ Variables declared inside a block are only visibly within this block and its internatl
blocks

Conditional Statements

❏ if - Statement

❏ if-else - Statement

❏ switch - Statement

❏ ? : Ternary operator

❏ No boolean type in ANSI C
○ introduced in C99

❏ Relational and logical expressions are evaluated to:
○ 1 if they are logically true
○ 0 if they are logically false

❏ Numeric expressions are considered false if they are evaluated to integer 0

❏ Pointer expressions are considered false if they are evaluated to null

if- Statement

❏ Syntax:
if (<condition>)
 <statement>;

❏ Example:
if (x % 2 == 0)
 y += x / 2 ;

○ Evaluate condition: (x % 2 == 0)
■ If true, execute inner statement: y += x/2;
■ Otherwise, do nothing

○ Inner statements may be block

if-else - Statement

❏ Syntax:
if (<condition>)
 <statement1>;
else
 <statement2>;

❏ Example:
if (x % 2 == 0)
 y += x / 2 ;
else
 y += (x + 1) / 2;

○ Evaluate condition: (x % 2 == 0)
■ If true, execute first statement: y += x/2;
■ Otherwise, execute second statement: y += (x + 1) / 2;

○ Either inner statements may be block

❏ Can have additional alternative control paths by nesting if statements:
if (<condition>)
 <statement1>; /* can be an if or if-else statement*/
else
 <statement2>; /* can be an if or if-else statement*/

❏ Conditions are evaluated in order until one is met; inner statement then executed
○ if multiple conditions true, only first executed

❏ Example:
if (x % 2 == 0)

 y += x / 2 ;

else if (x % 4 == 1)

 y += 2 ∗ ((x + 3)/ 4);

else

 y += (x +1)/ 2 ;

Nesting if/if-else Statements

❏ Dangling else , example:
if (x % 4 == 0)
if (x % 2 == 0)
y = 2;
else
y = 1;

○ To which if statement does the else keyword belong?
Belongs to the nearest if in the same block

○ To associate else with outer if statement: use braces
if (x % 4 == 0) {
 if (x % 2 == 0)

y = 2;
} else

y = 1;

Nesting if/if-else Statements

if (x % 4 == 0)
 if (x % 2 == 0)
 y = 2;
 else
 y = 1;

if (x % 4 == 0)
 if (x % 2 == 0)
 y = 2;
else
 y = 1;

switch - Statement

❏ Syntax:
switch (<int or char expression>) {
 case <literal1>: <statements>

[break;]
 [more cases]
 [default: <statements>]
}

❏ Provides multiple paths
❏ Case labels: different entry points into block
❏ Compares evaluated expression to each case in order:

○ When match found, starts executing inner code until break; reached
○ Execution “falls through” if break; is not included

switch - Statement

❏ Example:
switch (ch) {
 case ’Y’ : / ∗ ch == ’Y ’ ∗/
 / ∗ do something ∗/

break ;
 case ’N’ : / ∗ ch == ’N ’ ∗/

/∗ do something else ∗/
break ;

 default : / ∗ otherwise ∗/
/∗ do a third thing ∗/

}

Loops (Iterative Statements)

❏ while - loop

❏ for - loop

❏ do-while - loop

❏ break and continue keywords

Loops: while - Statement

❏ Syntax:
while (<condition>)

 <loop body>

❏ Simplest loop structure – evaluate body as long as condition is true
❏ Condition evaluated first, so body may never be executed
❏ Example:

Loops: for - Statement

❏ Syntax:
for ([<initialization>];[<condition>];[<modification>])

 <loop body>

❏ Example:
int i , j = 1;
for (i = 1; i <= n ; i ++)
 j ∗= i ;
printf(“%d\n”, j);

○ A “counting” loop
○ Inside parentheses, three expressions, separated by semicolons:

■ Initialization: i = 1
■ Condition: i <= n
■ Modification: i++

Loops: for - Statement

❏ Any expression can be empty (condition assumed to be “true”):
for (;;) /* infinite loop */

 <loop body>
❏ Compound expressions separated by commas

○ Comma: operator with lowest precedence, evaluated left-to-right
for (i = 1 , j = 1; i <= n ; j ∗= i , i ++)

 <loop body>

❏ Equivalent to while loop:
<initialization>
while (<condition>) {
 <loop body>
 <modification>
}

Loops: do-while - Statement

❏ Syntax:
do {

 <loop body>
} while(<condition>);

❏ Differs from while loop – condition evaluated after each iteration
○ Body executed at least once
○ Note semicolon at end

❏ Example:
char c ;
do {
/ ∗ loop body ∗ /
puts("Keep going? (y/n) ") ;
c = getchar();
/ ∗ other processing ∗ /
} while (c == ’y’ && / ∗ other conditions ∗/);

Loops: Nested Loops

❏ A nested loop is a loop within a loop
○ an inner loop within the body of an outer one.

for ([<initialization>];[<condition>];[<modification>])
 <loop body> /* another loop here */

❏ Can nest any loop statement within the body of any loop statement

❏ Can have more than two levels of nested loops

Loops: break - Statement

❏ Sometimes want to terminate a loop early
○ break; exits innermost loop or switch statement to exit early
○ Consider the modification of the do-while example:

char c ;
do {
 /* loop body ∗/
 puts ("Keep going? (y/n) ") ;
 c = getchar() ;
 if (c != ’y’)
 break ;
 /∗ other processing ∗/
} while (/∗ other conditions ∗/) ;

Loops: continue - Statement

❏ Use to skip an iteration
○ continue; skips rest of innermost loop body, jumping to loop condition

❏ Example:
int i , ret = 1 , minval;

for (i = 2; i <= (a > b? a:b); i++) {

 if (a % i) / ∗ a not divisible by b ∗/

 continue;

 if (b % i == 0) / ∗ b and a are multiple of i ∗/

 ret = i;

}

printf(“%d\n”, ret);

Unconditional Jump

❏ goto: transfers program execution to a labeled statement in the current function
○ DISCOURAGED
○ easily avoidable
○ requires a label

❏ Label: a plain text, except C keywords, followed by a colon, prefixing a code line
○ may occur before or after the goto statement

❏ Example: int main () {
 int a = 10;
 LOOP:do {
 if (a == 15) {
 a = a + 1;
 goto LOOP;
 }
 printf("value of a: %d\n", a++);
 } while(a < 20);
 return 0;
 }

