Pointers and Arrays

Outline

S

L. %4

£ %4

7/
L. %4

7/
£ %4

Physical and virtual memory

Pointers
o Declaration, operators, casting
o Passing as arguments and returning from functions
Arrays
o Declaration, initialization, accessing individual elements
o Arrays as constant pointers
o Multidimensional arrays
Pointer Arithmetic
o Assignment, addition and subtraction, increment and decrement, comparative operators
o Unary operators precedency

Cryptic C code

Pointers and Memory Addresses

A Physical memory: physical resources where data can be stored and accessed by

your computer
o Cache
o RAM
o hard disk
o removable storage

A Physical memory considerations:
o Different sizes and access speeds
Memory management — major function of OS
Optimization — to ensure your code makes the best use of physical memory available
OS moves around data in physical memory during execution

O
o
o
o Embedded processors — may be very limited

Pointers and Memory Addresses

A Virtual memory:
o abstraction by OS
o addressable space accessible by your code

A How much physical memory do I have?
Answer: 2 MB (cache) + 2 GB (RAM) + 100 GB (hard drive) +. ..

A How much virtual memory do I have?
Answer: <4 GB (32-bit OS)

L

Virtual memory maps to different parts of physical memory

A Usable parts of virtual memory: stack and heap
o stack: where declared variables go
o heap: where dynamic memory goes

Pointers and variables

A Every variable residing in memory has an address!

(@)

What doesn’t have an address?
m register variables
m constants/literals/preprocessor defines
m expressions (unless result is a variable)

A C provides two unary operators, & and *, for manipulating data using pointers

O

(@)

address operator &: when applied to a variable x, results in the address of x
dereferencing (indirection) operator *:
when applied to a pointer, returns the value stored at the address specified by the pointer.

A All pointers are of the same size:

©)
@)

O

they hold the address (generally 4 bytes)
pointer to a variable of type T has type T*

a pointer of one type can be converted to a pointer of another type by using an explicit cast:
int *ip; double *dp; dp= (double *)ip; OR ip = (int*)dp;

Examples

char a; /* Allocates 1 memory byte */
char *ptr; /* Allocates memory space to store memory address */
ptr = &ay; /* store the address of a in ptr. so, ptr points to a */

int x=1, y =2, z[10]={0, 1, 2, 3, 4, 5, 4, 3, 2, 1};

int *ip; /* ip is a pointer to int */
ip = &x; /* ip now points to x */

y = *ip; /* y is now 1 */

ip = 0; / x is now 0 */

ip = &z[0]; /* ip now points to z[0] */
printf ("%$d %d %d", x, y, *ip):;

y = *ip + 1;

printf ("%d %d %d", x, y, *ip):;

01 0010011

*ip += 1;

printf ("%$d %d %d", x, y, *ip):;

Dereferencing & Casting Pointers

A You can treat dereferenced pointer same as any other variable:
o get value, assign, increment/decrement

L

Dereferenced pointer has new type, regardless of real type of data

L

null pointer, 1.e. 0 (NULL): pointer that does not reference anything

4 Can explicitly cast any pointer type to any other pointer type
int* pn; ppi = (double *)pn;

A Implicit cast to/from void * also possible

A Possible to cause segmentation faults, other difficult-to-identify errors
O What happens if we dereference ppi now?

Passing Pointers by Value

/* Works as expected*/
void swap(int *a, int *Db) {

/* Does not work as expected*/
void swap (int a, int b) {

int temp = a; int temp = *a;
a = b; *a = *b;
b = temp; *b = temp;
} }
int main () {
int al[] = {3, 5, 7, 9}; int a = {3, 5, 7, 9};
swap(a[l]l, al2]); swap (&a[l], &b[2]);
printf("al[l]=%d, a[2]=%d\n", alll, al2]); printf ("a[l]=%d, a[2]=%d\n",al[l], al2]);

iint main () {
: return O;

__

Function Returning a Pointer

A Functions can return a pointer
Example: int * myFunction() { . : c)

A But: never return a pointer to a local variable ...
#include <stdio.h> #include <stdio.h>
char * get message () { char * get message () {
char msg[] = "Hello"; static char msg[] = "Hello";
return msg; return msg;

})

int main (void) { int main (void) {
char * str = get message() ; char * str = get message() ;
puts (str); puts (str) ;

return 0; return O;

}

L

unless it 1s defined as static

A Multiple returns? Use extra parameters and pass addresses as arguments.

Fixed-size sequential collection of elements of the same type

Primitive arrays implemented as a pointer to block of contiguous memory locations
o lowest address corresponds to the first element and highest address to the last element

Declaration: <element type> <array name> [<positive int array size>];
Example: int balance[8]; /* allocate 8 int elements*/

Accessing individual elements: <array name>[<element index>]
Example int a = balance[3]; /* gets the 4th element’s value*/

Array Initializer: <type> <name> [<optional size>] = {<comma-sep elements>};
<optional size> must be >= # of elements

Under the hood: the array is constant pointer to the first element

int *pa = arr; € 1int *pa = &arr[0];

Array variable is not modifiable/reassignable like a pointer
int al[5];

int b[] = {-1, 3, -5, 7, -9};

a = b;

error: assignment to expression with array type

arr[3] 1sthe same as * (arr+3): to be explained in few minutes
[terating over an array:
int i; int *pi;

for(i = 0; 1 < n; i++) 4 for(pi = a; pi < a + n; pit+)
arr[i]++; (*pi) ++;

Strings

A There is no string type, we implement strings as arrays of chars
char str[10]; /* is an array of 10 chars or a string */
char *str; /* points to 1lst char of a string of unspecified length

*/
A There is a string.h library with numerous string functions
O they all operate on arrays of chars and include:
strcpy (sl, s2) :copiess2into sl (including “\0’ as last char)
strncpy (sl, s2, n) :same butonly copies up to n chars of s2
strcmp (s1, s2) :returns anegative int if s1 <s2, 0 if s1 ==s2 and a positive int if s1 > s2
strncmp (sl, s2, n) :same but only compares up to n chars
strcat (sl, s2) :concatenates s2 onto sl (this changes s1, but not s2)
strncat (sl, s2, n) :same butonly concatenates up to n chars
strlen(sl) :returns the integer length of sl

strehtr (1. ch) c returne a nointer to the 1<t occurrence of ch 1n <1 (or NUT 1. if not found)

Arrays

A Array length? no native function
#include <stdio.h>

int main () {
char* pstr = "CSC215";
printf ("$s\t%d\n", pstr, sizeof (pstr)):;
char astr[7] = "CSC215";
printf ("$s\t%d\n", astr, sizeof (astr));
int aint[107]; CsC215
printf ("$d\t%d\n", sizeof (aint[0]), sizeof (aint)); CSC215
int* pint = aint; 4 40

4 4

printf ("$d\t%d\n", sizeof (pint[0]), sizeof (pint));
return 0;
}
[IJOW/abOUIZsizeof(arr)==O?O : sizeof (arr)/sizeof(arr([0]);
can be defined as a macro:
#define arr length(arr) (sizeof (arr)==0?0 : sizeof(arr)/sizeof((arr)[0]))

Multidimensional Arrays

[Syntax: <type> <name> [<sizel>][<size2>]...[<sizeN>];
Example: int threedim[5][10][4];

A Inmitializer: = { { (..}, {..},{..}}, {...}, {...}}

Example: int twodim[2][4]={{1,2,3,4},{-1,-2,-3,-4}}; /* or simply: */
int twodim([2][4]={1, 2, 3, 4, -1, -2, -3, -4};

o You cannot omit any dimension size

A Accessing individual elements:
<name> [<dimlindex>] [<dim2index>]... [<dimNindex>]
Example: twodim[1][2]1=5; printf ("$d\n", twodim[0][3]);
> S D o > N~ 2 0

. S S A o D
(d Allocation: @@ @@ &«\@ ,;\V& ,@@ @@ @@ AN

twodim A0 NS N NS NS NS ng%'

3bf71a0d - 1 2 3 4 -1 -2 -3 -4

Multidimensional Arrays

d Pointer style: <type> ** <name>; /* add * for every extra dimension */
a pointer to the 1st element of an array, each element of which is a pointer to the 1st element in an array

A More flexibility:

Example: char b[4]1([7] = {"cscl11", "CsSC113", "CsC212", "CSC215"};
char *bb[] = {"CSC215", "This is a beautiful morning","M","I guess so"};

QO Still have []?

o To define pure pointer 2D array:

m Declare <type>** x variable

m Allocate memory for N elements of type <t ype>* (1% dimension)

m For each of these elements, allocate memory for elements of type <t ype> () (2" dimension)
o Ignore it for now, you learn first about memory managements in C.

A Arguments to main: int main(int argc, char** argv){ ..)

o Name of the executable is always the element at index 0
for (i1i=0; i<argc; i++) printf("%$s\n", argv[i]);

Arrays of Pointers

A Example is an array of strings:
char *suit[4] = { "Hearts", "Diamonds", "Clubs", "Spades" };
o strings are pointers to the first character
o char * each element of suit is a pointer to a char
o strings are not actually stored in the array suit, only pointers to the strings are stored
O suit array has a fixed size, but strings can be of any size

suit[0] ._4.|’H’ |-'e’ |-‘a’ "r-‘ | t ‘ 5 | \O |

suit[1] ._44’D’ |'i’ |-‘a’ "m’ | o ‘ n |”1c1Jr |-‘5 | \O |
suit[2] ._4,|’C’ | 1 | u "b | s | \0 |

suit[3] ._44151 |’p-’ |’a' ‘!d' | e | s | \0" |

Pointer Arithmetic

A Assignment operator = : initialize or assign a value to a pointer
o value such as 0 (NULL), or
o expression involving the address of previously defined data of appropriate type, or
o value of a pointer of the same type, or different type casted to the correct type

A Arithmetic operators + , —: scaling is applied
o adds a pointer and an integer to get a pointer to an element of the same array
o subtract an integer from a pointer to get a pointer to an element of the same array
o Subtract a pointer from a pointer to get number of elements of the same array between them

A Increment/Decrement ++ , --: scaling is applied
o result is undefined if the resulting pointer does not point to element within the same array

A Comparative operators:
o ==, !=:can be used to compare a pointer to 0 (NULL)
o ==,!=,>, >=, <, <=:canbe used between two pointers to elements in the same array

A All other pointer arithmetic is illegal

Example: Increment/Decrement Operators

#include <stdio.h>

2 pf£882b38

200

Address of wvar
Value of var([?2

int main () H£882b30
int var[] = {10, 100, 200}; var
int i, *ptr;
/* let us have array address in pointer */ I 2
ptr = var;
for (1 = 0; 1 < 3; 1i++){ pu bf882b38
printf ("Address of var[%d] = %$x\n", i, ptr);
printf ("Value of var[%d] = %d\n", 1, *ptr);
/* move to the next location */
ptr++;
}
return 0;
Address of var[0] = bf882b30 10 100 200
Value of var[0] = 10 %Q %& g%
O O O
Address of var[1] bf882b34 QL QL QL
_ &% %,% &%
= 100 0 AS RS
]

]
[
Value of wvar([1l]
[
]

Example: Comparative operators

#include <stdio.h>
const int MAX = 3;
int main () {
int var[] = {10, 100, 200};
int i, *ptr;
/* let us have address of the first element in pointer */
ptr = var;
i = 0;
while (ptr <= &var[MAX - 1]) {
printf ("Address of var[%d] = %$x\n", 1, ptr);

printf ("Value of var[%d] = %d\n", i, *ptr);
/* point to the next location */

ptr++;

i++;

}

return 0;

Precedence of Pointer Operators

A Unary operators & and * have same precedence as any other unary operator

O with associativity from right to left.

A Examples:
c=*++cp c=* (++cp)
c=*cp++ c=* (cp++)
c=++*cp c=++ (*cp)

2727 c=(*cp) ++

Cryptic vs. Short C Code

A Consider the following function that copies a string into another:

void strcpy(char *s, char *t) {

int 1i;
i = 0;
while ((*s = *t) != '"\0") {
S++;
T++;
} , e
) A Obfuscation (software) ey
O Now, consider this (A The International Obfuscated C Code Contest
void strcpy(char *s, char *t) { lﬂgxﬂ%wmvjoccaong/
while ((*s++ = *t++) != "\0");
}
O and this

void strcpy(char *s, char *t){
while (*s++ = *t++);

}

https://en.wikipedia.org/wiki/Obfuscation_(software)

