
Pointers and Arrays

CSC215
Lecture

Outline

❖ Physical and virtual memory
❖ Pointers

○ Declaration, operators, casting
○ Passing as arguments and returning from functions

❖ Arrays
○ Declaration, initialization, accessing individual elements
○ Arrays as constant pointers
○ Multidimensional arrays

❖ Pointer Arithmetic
○ Assignment, addition and subtraction, increment and decrement, comparative operators
○ Unary operators precedency

❖ Cryptic C code

Pointers and Memory Addresses

❏ Physical memory: physical resources where data can be stored and accessed by
your computer
○ Cache
○ RAM
○ hard disk
○ removable storage

❏ Physical memory considerations:
○ Different sizes and access speeds
○ Memory management – major function of OS
○ Optimization – to ensure your code makes the best use of physical memory available
○ OS moves around data in physical memory during execution
○ Embedded processors – may be very limited

Pointers and Memory Addresses

❏ Virtual memory:
○ abstraction by OS
○ addressable space accessible by your code

❏ How much physical memory do I have?
Answer: 2 MB (cache) + 2 GB (RAM) + 100 GB (hard drive) + . . .

❏ How much virtual memory do I have?
Answer: <4 GB (32-bit OS)

❏ Virtual memory maps to different parts of physical memory

❏ Usable parts of virtual memory: stack and heap
○ stack: where declared variables go
○ heap: where dynamic memory goes

Pointers and variables

❏ Every variable residing in memory has an address!
○ What doesn’t have an address?

■ register variables
■ constants/literals/preprocessor defines
■ expressions (unless result is a variable)

❏ C provides two unary operators, & and *, for manipulating data using pointers
○ address operator &: when applied to a variable x, results in the address of x
○ dereferencing (indirection) operator *:

when applied to a pointer, returns the value stored at the address specified by the pointer.

❏ All pointers are of the same size:
○ they hold the address (generally 4 bytes)
○ pointer to a variable of type T has type T*
○ a pointer of one type can be converted to a pointer of another type by using an explicit cast:

int *ip; double *dp; dp= (double *)ip; OR ip = (int*)dp;

Examples
char a; /* Allocates 1 memory byte */
char *ptr; /* Allocates memory space to store memory address */
ptr = &a; /* store the address of a in ptr. so, ptr points to a */

int x = 1, y = 2, z[10]={0, 1, 2, 3, 4, 5, 4, 3, 2, 1};

int *ip; /* ip is a pointer to int */

ip = &x; /* ip now points to x */

y = *ip; /* y is now 1 */

ip = 0; / x is now 0 */

ip = &z[0]; /* ip now points to z[0] */

printf("%d %d %d", x, y, *ip);

y = *ip + 1;

printf("%d %d %d", x, y, *ip);

*ip += 1;

printf("%d %d %d", x, y, *ip);

0 1 00 1 00 1 1

Dereferencing & Casting Pointers

❏ You can treat dereferenced pointer same as any other variable:
○ get value, assign, increment/decrement

❏ Dereferenced pointer has new type, regardless of real type of data

❏ null pointer, i.e. 0 (NULL): pointer that does not reference anything

❏ Can explicitly cast any pointer type to any other pointer type
int* pn; ppi = (double ∗)pn;

❏ Implicit cast to/from void * also possible

❏ Possible to cause segmentation faults, other difficult-to-identify errors
○ What happens if we dereference ppi now?

Passing Pointers by Value
/* Does not work as expected*/
void swap(int a, int b){
 int temp = a;
 a = b;
 b = temp;
}

int main(){
 int a[] = {3, 5, 7, 9};
 swap(a[1], a[2]);
 printf("a[1]=%d, a[2]=%d\n", a[1], a[2]);
 return 0;
}

/* Works as expected*/
void swap(int *a, int *b){
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(){
 int a = {3, 5, 7, 9};
 swap(&a[1], &b[2]);
 printf("a[1]=%d, a[2]=%d\n",a[1], a[2]);
 return 0;
}

Function Returning a Pointer

❏ Functions can return a pointer
Example: int * myFunction() { . . . }

❏ But: never return a pointer to a local variable
#include <stdio.h>
char ∗ get_message () {
 char msg[] = "Hello";
 return msg;
}
int main (void){
 char ∗ str = get_message() ;
 puts(str);
 return 0;
}

❏ unless it is defined as static

❏ Multiple returns? Use extra parameters and pass addresses as arguments.

#include <stdio.h>
char ∗ get_message () {
 static char msg[] = "Hello";
 return msg;
}
int main (void){
 char ∗ str = get_message() ;
 puts(str);
 return 0;
}

Arrays

❏ Fixed-size sequential collection of elements of the same type

❏ Primitive arrays implemented as a pointer to block of contiguous memory locations
○ lowest address corresponds to the first element and highest address to the last element

❏ Declaration: <element_type> <array_name> [<positive_int_array_size>];
Example: int balance[8]; /* allocate 8 int elements*/

❏ Accessing individual elements: <array_name>[<element_index>]
Example int a = balance[3]; /* gets the 4th element’s value*/

❏ Array Initializer: <type> <name>[<optional_size>] = {<comma-sep elements> };
<optional_size> must be >= # of elements

Arrays

❏ Under the hood: the array is constant pointer to the first element
int ∗pa = arr; ⇔ int ∗pa = &arr[0];

❏ Array variable is not modifiable/reassignable like a pointer
int a[5];
int b[] = {-1, 3, -5, 7, -9};
a = b;
error: assignment to expression with array type

❏ arr[3] is the same as *(arr+3): to be explained in few minutes

❏ Iterating over an array:
int i; int *pi;
for(i = 0; i < n; i++) ⇔ for(pi = a; pi < a + n; pi++)
 arr[i]++; (*pi)++;

Strings

❏ There is no string type, we implement strings as arrays of chars
char str[10]; /* is an array of 10 chars or a string */
char *str; /* points to 1st char of a string of unspecified length
*/

❏ There is a string.h library with numerous string functions
○ they all operate on arrays of chars and include:

strcpy(s1, s2) : copies s2 into s1 (including ‘\0’ as last char)
strncpy(s1, s2, n) : same but only copies up to n chars of s2
strcmp(s1, s2) : returns a negative int if s1 < s2, 0 if s1 = = s2 and a positive int if s1 > s2
strncmp(s1, s2, n) : same but only compares up to n chars
strcat(s1, s2) : concatenates s2 onto s1 (this changes s1, but not s2)
strncat(s1, s2, n) : same but only concatenates up to n chars
strlen(s1) : returns the integer length of s1
strchr(s1, ch) : returns a pointer to the 1st occurrence of ch in s1 (or NULL if not found)
strrchr(s1, ch) : same but the pointer points to the last occurrence of ch
strstr(s1, s2) : substring, return a pointer to the char in s1 that starts a substring that
matches s2, or NULL if the substring is not present

Arrays

❏ Array length? no native function
#include <stdio.h>
int main() {
 char* pstr = "CSC215";
 printf("%s\t%d\n", pstr, sizeof(pstr));
 char astr[7] = "CSC215";
 printf("%s\t%d\n", astr, sizeof(astr));
 int aint[10];
 printf("%d\t%d\n", sizeof(aint[0]), sizeof(aint));
 int* pint = aint;
 printf("%d\t%d\n", sizeof(pint[0]), sizeof(pint));
 return 0;
}

❏ How about: sizeof(arr)==0?0 : sizeof(arr)/sizeof(arr[0]);
can be defined as a macro:
#define arr_length(arr)(sizeof(arr)==0?0 : sizeof(arr)/sizeof((arr)[0]))

CSC215 4
CSC215 7
4 40
4 4

Multidimensional Arrays

❏ Syntax: <type> <name>[<size1>][<size2>]...[<sizeN>];
Example: int threedim[5][10][4];

❏ Initializer: = { { {..},{..},{..}}, {...}, {...}}
Example: int twodim[2][4]={{1,2,3,4},{-1,-2,-3,-4}}; /* or simply: */

int twodim[2][4]={1, 2, 3, 4, -1, -2, -3, -4};

○ You cannot omit any dimension size

❏ Accessing individual elements:
<name>[<dim1index>][<dim2index>]...[<dimNindex>]
Example: twodim[1][2]=5; printf("%d\n", twodim[0][3]);

❏ Allocation:

1 2 3 4 -1 -2 -3 -4

3b
f7
1a
0d

3b
f7
1a
11

3b
f7
1a
15

3b
f7
1a
19

3b
f7
1a
1d

3b
f7
1a
21

3b
f7
1a
25

3b
f7
1a
29

twodim

3bf71a0d

Multidimensional Arrays

❏ Pointer style: <type> ** <name>; /* add * for every extra dimension */
a pointer to the 1st element of an array, each element of which is a pointer to the 1st element in an array

❏ More flexibility:
Example: char b[4][7] = {"CSC111", "CSC113", "CSC212", "CSC215"};

char *bb[] = {"CSC215", "This is a beautiful morning","M","I guess so"};

❏ Still have []?
○ To define pure pointer 2D array:

■ Declare <type>** x variable
■ Allocate memory for N elements of type <type>* (1st dimension)
■ For each of these elements, allocate memory for elements of type <type> () (2nd dimension)

○ Ignore it for now, you learn first about memory managements in C.

❏ Arguments to main: int main(int argc, char** argv){ … }
○ Name of the executable is always the element at index 0

for (i=0; i<argc; i++) printf("%s\n", argv[i]);

Arrays of Pointers

❏ Example is an array of strings:
char *suit[4] = { "Hearts", "Diamonds", "Clubs", "Spades" };
○ strings are pointers to the first character
○ char * each element of suit is a pointer to a char
○ strings are not actually stored in the array suit, only pointers to the strings are stored
○ suit array has a fixed size, but strings can be of any size

Pointer Arithmetic
❏ Assignment operator = : initialize or assign a value to a pointer

○ value such as 0 (NULL), or
○ expression involving the address of previously defined data of appropriate type, or
○ value of a pointer of the same type, or different type casted to the correct type

❏ Arithmetic operators + , -: scaling is applied
○ adds a pointer and an integer to get a pointer to an element of the same array
○ subtract an integer from a pointer to get a pointer to an element of the same array
○ Subtract a pointer from a pointer to get number of elements of the same array between them

❏ Increment/Decrement ++ , --: scaling is applied
○ result is undefined if the resulting pointer does not point to element within the same array

❏ Comparative operators:
○ == , != : can be used to compare a pointer to 0 (NULL)
○ == , != , > , >= , < , <= : can be used between two pointers to elements in the same array

❏ All other pointer arithmetic is illegal

Example: Increment/Decrement Operators

#include <stdio.h>
int main (){
 int var[] = {10, 100, 200};
 int i, *ptr;
 /* let us have array address in pointer */
 ptr = var;
 for (i = 0; i < 3; i++){
 printf("Address of var[%d] = %x\n", i, ptr);
 printf("Value of var[%d] = %d\n", i, *ptr);
 /* move to the next location */
 ptr++;
 }
 return 0;
}

Address of var[0] = bf882b30
Value of var[0] = 10
Address of var[1] = bf882b34
Value of var[1] = 100
Address of var[2] = bf882b38
Value of var[2] = 200

bf
88
2b
30

bf
88
2b
34

bf
88
2b
38

10 100 200

var bf882b30var bf882b30

i

ptr

var bf882b30

i

ptr bf882b30

var bf882b30

i 0

ptr bf882b30

var bf882b30

i 1

ptr bf882b34

var bf882b30

i 2

ptr bf882b38

Example: Comparative operators

#include <stdio.h>
const int MAX = 3;
int main (){
 int var[] = {10, 100, 200};
 int i, *ptr;
 /* let us have address of the first element in pointer */
 ptr = var;
 i = 0;
 while (ptr <= &var[MAX - 1]){
 printf("Address of var[%d] = %x\n", i, ptr);
 printf("Value of var[%d] = %d\n", i, *ptr);
 /* point to the next location */
 ptr++;
 i++;
 }
 return 0;
}

Precedence of Pointer Operators

❏ Unary operators & and * have same precedence as any other unary operator
○ with associativity from right to left.

❏ Examples:
c=*++cp c=*(++cp)

c=*cp++ c=*(cp++)

c=++*cp c=++(*cp)

??? c=(*cp)++

Cryptic vs. Short C Code
❏ Consider the following function that copies a string into another:

void strcpy(char *s, char *t){
 int i;

 i = 0;
 while ((*s = *t) != '\0') {
 S++;
 T++;
 }
}

○ Now, consider this
void strcpy(char *s, char *t){
 while ((*s++ = *t++) != '\0');
}

○ and this
void strcpy(char *s, char *t){
 while (*s++ = *t++);
}

❏ Obfuscation (software)

❏ The International Obfuscated C Code Contest
http://www.ioccc.org/

https://en.wikipedia.org/wiki/Obfuscation_(software)

