
Memory Management

CSC215
Lecture

Outline

❖ Static vs Dynamic Allocation

❖ Dynamic allocation functions
malloc, realloc, calloc, free

❖ Implementation

❖ Common errors

Static Allocation

❏ Allocation of memory at compile-time
○ before the associated program is executed

❏ Let’s say we need a list of 1000 names:
○ We can create an array statically

char names[1000][20]
○ allocates 20000 bytes at compile time
○ wastes space
○ restricts the size of the names

Dynamic allocation of memory

❏ Heap is a chunk of memory that users can use to dynamically allocated memory
○ Lasts until freed, or program exits.

❏ Allocate memory during runtime as needed
#include <stdlib.h>

❏ Use sizeof number to return the number of bytes of a data type.

❏ To reserve a specified amount of free memory and returns a void pointer to it, use:
○ malloc
○ calloc
○ Realloc

❏ To release a previously allocated memory block, use:
○ free

Dynamic Allocation: malloc

❏ C library function allocates the requested memory and returns a pointer to it
void *malloc(size_t size)
○ size_t: unsigned integer type
○ size: the size of the requested memory block, in bytes
○ return value: a pointer to the allocated memory, or NULL if the request fails
○ memory block is not cleared (undefined)

❏ Example:
char *str = (char *) malloc(3*sizeof(char));
*str = 'O';
*(str+1) = 'K';
*(str+2) = '\0';

Dynamic Allocation: realloc

❏ C library function attempts to resize the memory block pointed to by a pointer
void *realloc(void *ptr, size_t size)
○ ptr: a previously allocated pointer (using malloc, calloc or realloc)

■ if NULL, a new block is allocated ⇔ malloc
○ size: the total size of the requested memory block, in bytes

■ if 0, the memory pointed to by ptr is freed ⇔ free
○ return value: a pointer to the allocated memory, or NULL if the request fails
○ may move the memory block to a new location

❏ Example:
char *str = (char *) malloc(3 * sizeof(char));
*str = 'H'; *(str+1) = 'i'; *(str+2) = '\0';

str = (char *) realloc(str , 6 * sizeof(char));
*(str+1) = 'e'; *(str+2) = 'l'; *(str+3) = 'l';
*(str+4) = 'o'; *(str+5) = '\0';

What is considered
a bad practice here?

Dynamic Allocation: calloc
❏ Dynamically allocating arrays:

○ allows the user to avoid fixing array size at declaration
○ use malloc to allocate memory for array when needed:

int *a = (int *)malloc(sizeof(int)*10);
a[0]=1;

❏ Alternatively, use:
void *calloc(size_t nitems, size_t size)
○ nittems: the number of elements to be allocated
○ size: the size of the requested memory block, in bytes
○ return value: a pointer to the allocated memory, or NULL if the request fails
○ sets allocated memory to 0s

❏ Example:
int size; char *s;
printf(“How many characters?\n”); scanf(“%d”, &size);
s = (char *)calloc(size+1, 1);
printf(“type string\n”); gets(s);

Dynamic Deallocation: free

❏ C library function deallocates the memory previously allocated
○ by a call to calloc, malloc, or realloc

void free(void *ptr)
○ ptr : the pointer to a memory block previously allocated with malloc, calloc or realloc to be

deallocated
○ If a null pointer is passed as argument, no action occurs.

❏ Can only be used on pointers that are dynamically allocated

❏ It is an error to free:
○ A pointer that has already been freed
○ Any memory address that has not been directly returned by a dynamic memory allocation routine

❏ Example:
char *str = (char *)malloc(3*sizeof(char));
/* use str */
free(str);

How It Is Done

❏ Best-fit method:
an area with m bytes is selected, where m is the smallest available chunk of
contiguous memory equal to or larger than n.

❏ First-fit method:
returns the first chunk encountered containing n or more bytes.

❏ Prevention of fragmentation
a memory manager may allocate chunks that are larger than the requested size if
the space remaining is too small to be useful.

❏ When free is called:
returns chunks to the available space list as soon as they become free and
consolidate adjacent areas

Common Dynamic Allocation Errors

❏ Initialization errors
do not assume memory returned by malloc and realloc to be filled with zeros

❏ Failing to check return values
since memory is a limited resource, allocation is not always guaranteed to succeed

❏ Memory leak
Forgetting to call free when the allocated memory is no more needed

❏ Writing to already freed memory
if pointer is not set to NULL it is still possible to read/write from where it points to

❏ Freeing the same memory multiple times
may corrupt data structure

❏ Improper use of allocation functions
malloc(0): insure non-zero length

Example
#include <stdio.h>
#include <stdlib.h>
int main(){
 int input, n, count = 0;
 int *numbers = NULL, *more_numbers = NULL;
 do {
 printf ("Enter an integer (0 to end): "); scanf("%d", &input);
 count++;
 more_numbers = (int*)realloc(numbers, count * sizeof(int));
 if (more_numbers!=NULL) {
 numbers = more_numbers;
 numbers[count-1]=input;
 else {
 free(numbers);
 puts("Error (re)allocating memory");
 return 1;
 }
 } while (input!=0);
 printf ("Numbers entered: ");
 for (n=0;n<count;n++) printf ("%d ",numbers[n]);
 free (numbers);
 return 0;
}

Example: mat.c
#include <stdio.h>
#include <stdlib.h>
#include "mat.h"

int** get_matrix(int rows, int cols){
 int i, **matrix;
 if (matrix = (int**)malloc(rows*sizeof(int*)))
 if (matrix[0] = (int*)calloc(rows*cols,sizeof(int))){
 for (i=1; i<rows; i++)
 matrix[i] = matrix[0] + cols * i;
 return matrix;
 }
 return NULL;
}

void free_matrix(int** m){
 free(m[0]);
 free(m);
}

Compare with:
void free_matrix(int*** m){
 free(*m[0]);
 free(*m);
 *m = NULL;
}

Compare with:
if (matrix =
 (int**) malloc(rows*sizeof(int*)))
 for (i=0; i<rows; i++)
 if(!(matrix[i] =
 (int*) calloc(cols,sizeof(int))))
 return NULL;
 return matrix;

Example: mat.c
void fill_matrix(int** m, int rows, int cols){
 int i, j;
 for (i=0; i < rows; i++)
 for (j=0; j < cols; j++){
 printf("Enter element [%d, %d]:", i, j); scanf("%d", &m[i][j]);
 }
}
void print_matrix(int** m, int rows, int cols){
 int i, j;
 for (i=0; i < rows; i++){
 for (j=0; j < cols; j++) printf("%d\t", m[i][j]);
 printf("\n");
 }
}
int** transpose(int** m, int rows, int cols){
 int i, j, **t = get_matrix(cols, rows);
 for (i=0; i < rows; i++)
 for (j=0; j < cols; j++) t[j][i] = m[i][j];
 return t;
}

Example: mat.h
#if !defined MAT

#define MAT

int** get_matrix(int, int);

void free_matrix(int**); /* OR */ void free_matrix(int***);

void fill_matrix(int**, int, int);

void print_matrix(int**, int, int);

int** transpose(int**, int, int);

#endif

Example: test.c
#include <stdio.h>
#include "mat.h"

int main(){
 int r, c;
 printf("How many rows? "); scanf("%d", &r);
 printf("How many columns? "); scanf("%d", &c);

 int** mat = get_matrix(r, c);

 fill_matrix(mat, r, c);
 print_matrix(mat, r, c);

 int** tra = transpose(mat, r, c);
 print_matrix(tra, c, r);

 free_matrix(mat); /* OR */
 free_matrix(tra);
 return 0;
}

free_matrix(&mat);
free_matrix(&tra);

