

CSC 569 - SPRING 2014

SELECTED TOPICS IN AI

DR. MANAR HOSNY

COURSE OBJECTIVES

The purpose of this course is to introduce fundamental concepts of heuristics in solving various optimization problems with emphasis on metaheuristics. The topics include basic heuristic constructs (greedy, improvement, construction); metaheuristics such as simulated annealing, tabu search, genetic algorithms, ant algorithms and their hybrids.

By the end of this course students should be able to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, such as networking, bioinformatics, routing and scheduling, etc.

COURSE CONTENTS

PART I: COMMON CONCEPTS FOR METAHEURISTICS

- a) Optimization models and methods
- b) Main common concepts for metaheuristics
- c) Constraint handling and parameter tuning
- d) Performance analysis of metaheuristics

PART II: SINGLE SOLUTION BASED METAHEURISTICS:

- a) Common concepts of fitness landscape analysis
- b) Local search
- c) Simulated annealing
- d) Tabu Search
- e) Iterated local search
- f) Variable neighborhood search

- g) Guided local search
- h) GRASP

PART III: POPULATION BASED METAHEURISTICS

- a) Common concepts of population based metaheuristics
- b) Evolutionary algorithms
- c) Scatter Search
- d) Swarm Intelligence

COURSE PLAN

WEEK 1(3 FEB):

- Course objectives, syllabus and plan
- Introduction

WEEKS 2 (10 FEB):

• Part I-1

WEEKS 3 (17 FEB):

WEEKS 4 (24 FEB):

• Part I-2

WEEKS 5 (3 MARCH):

• Part II-1

WEEKS 6 (10MARCH):

• Part II-2

WEEKS 7 (17 March)

• Exam 1

WEEKS 8 (24 March)

• Half term break

WEEKS 9 (31 March)

- 1 paper to be discussed on TS search, SA, LS, VNS, GRASP
- Part III -1

WEEK 10 (7 April)

• Part III -2

WEEK 11 (14 April):

• 2 papers to be discussed on GAs

WEEK 12 (21 April):

• Part III -3

WEEK 13 (28 APRIL):

- 1 paper to be discussed on swarm intelligence
- Part III-4

WEEK 14 (5 MAY):

• Student Paper Presentation

WEEK 15 (12 MAY):

• Project discussion

WEEK 16 (19 MAY):

• Project Presentation

WEEK 17 (26 MAY):

• Final Exam

EVALUATION

- 1. 1 Midterm 20
- 2. Participation

5

- Class papers discussion (1 each) → 4
- Paper presentation discussion $\rightarrow 0.5$
- Project presentations discussion $\rightarrow 0.5$
- 3. Paper Presentation 15
 - Compare two metaheuristics solution methods on the same problem
- 4. Project

20

- Solve a selected problem (to be announced later) using one of the studied metaheuristics.
- Provide a document, demo, and presentation
- 5. Final 40

REFERENCES

Text Book:

• Metaheuristics from Design to Implementation, El-Ghazali Talbi- Wiley, 2009

Additional References:

- Handbook of Metaheuristics, Gendreau & Potvin (Eds.), second edition, Springer, 2010
- Essentials of Metaheuristics, Sean Luke, Lulu, First Edition, 2009