Perspective of Feature Selection Techniques in Bioinformatics

Satish Kumar David¹, Mohammad Khalid Siddiqui²
¹IT Department, ²Department of Basic Sciences
¹,²Strategic Center for Diabetes Research, King Saud University, Riyadh, Saudi Arabia

Abstract

The availability of massive amounts of experimental data based on genome-wide association and mass spectroscopy studies have given motivation in recent years to a large effort in developing mathematical, statistical and computational techniques to infer biological models from data. In many bioinformatics problems the number of features is significantly larger than the number of samples (high feature to sample ratio data sets) and feature selection techniques have become an apparent need in many bioinformatics applications. In addition to the large pool of techniques that have already been developed in the data mining fields, specific applications in bioinformatics have led to a wealth of newly proposed techniques. This assessment provides the awareness of the possibilities of feature selection, providing a basic taxonomy of feature selection techniques, discussing their use, variety and potential in a number of both common as well as upcoming bioinformatics applications.

Keywords
Bioinformatics; Feature Selection; Text Mining; Wrapper; Genotype analysis.

Introduction

Now a day’s interest for using Feature Selection (FS) techniques in bioinformatics becoming compulsion for model building from being just example. The modeling tasks going to spectral analysis and text mining from sequence analysis over microarray analysis in bioinformatics. FS helps to acquire better understanding about the data’s important features and their relationship type and can be applied to supervised (classification, prediction) and unsupervised (Clustering) learning [1]. The original representation of the variables does not vary in FS techniques but dimensionality reduction techniques such as projection and compression can vary the original representation of the variables. From an informatics perspective, the process of selecting differentially expressed genes is readily achieved via data-mining techniques known as Feature Selection. It is an important step in the data-mining process aims to find representative optimal feature subsets that meet desired criteria. The key consideration in this review is FS techniques application and the idea is to bring awareness of the requirements and benefits of using FS techniques. This article also will give an idea about few useful data mining and bioinformatics software packages used for FS.

In microarray data analysis, one criterion for a desired feature subset would be a set of genes whose expression patterns vary significantly when compared across different sample groups. The resulting subset can then be used to further analysis such as building a diagnostic classifier. Problem of selecting some subset of a learning algorithm’s input variables upon which it should focus attention, while ignoring the rest (Dimensionality Reduction). Several pattern recognition techniques alone do not handle with large amounts of irrelevant features. Pattern recognition techniques and FS techniques jointly work effectively in many applications [2]. A large number of features enhances the model’s flexibility, but makes it prone to over fitting. The FS objectives are
(a) To increase the speed of learning algorithm’s
(b) To improve the accuracy of classifier on new data
(c) To remove redundant features from dataset.

In classification context approaches for FS techniques tasks are: filters, wrappers and embedded methods [3].

Filter Approach

FS is based on an evaluation criterion for quantifying how well feature (subsets) discriminate the two classes in Filter techniques. Filters assess the relevance of features. Relevance score calculated and low scored are removed and then this subset is input to classification algorithm. Only once FS needs to be performed and then different classifiers evaluated [4]. Improved scalability, simple and fast is the advantages of filter techniques. Disadvantages of filter techniques are classifiers performance may be non-optimal features [5]. To prevail over the problem of overlooking feature dependencies, numbers of multivariate filter techniques were introduced.

Wrapper Approach

Wrapper techniques are iterative approach, many feature subsets are scored based on classification performance. Running a model on the subset wrappers use a search algorithm to search through the space of possible features and evaluate each subset. Wrappers have higher over fitting risk and can be computationally expensive. These search methods assess subsets of variables according to their usefulness to a given classifier [6]. Based on search method the wrapper methods divided into two kinds a)randomize [7,8] b)Greedy [9]. Advantages of Wrapper techniques are improving the performance of given
classifier. Disadvantages of Wrapper techniques are computationally intensive, high cost and poor scalability.

Embedded Approach

Embedded techniques are specific to a model. These methods use all the variables to generate and analyze the model to recognize the importance of the variables [10]. FS is part of classifier’s training procedure (e.g. decision trees). Consequently, they directly link variable importance to the learner used to model the relationship. Attempt to jointly or simultaneously train both a classifier and a feature subset. Often optimize an objective function that jointly rewards accuracy of classification and penalizes use of more features. Advantages of Embedded technique are less computationally intensive. Disadvantage of embedded technique is classifier dependent classifier.

Literature Mining

Automated methods for knowledge retrieval from the text are known as literature mining. Most knowledge is stored in terms of texts, both in industry and in academia. In biology promising area for data mining is literature mining [11]. Word based system Bag-of-Words (BOW) representation is changing set of words linearly structured into unstructured which may lead to very high dimensional datasets and the need for feature selection techniques [12]. BOW based models use statistical weights based on term frequency, document frequency, passage frequency, and term density. BOW disregards grammatical structure, layout free representation and context dependent. Literature mining developed for document clustering, classification and researcher’s practical use.

Sequence Analysis

Sequence analysis is the modern operation in computational biology. This operation find out which part of the biological sequences is alike and which part differs during medical analysis and genome mapping processes. The sequence analysis implies subjecting a DNA to sequence databases, sequence alignment, repeated sequence searches, or other methods in bioinformatics [13]. New sequencing methodologies, fully automated instrumentation, and improvements in sequencing-related computational resources greatly contributed for genome-size sequencing projects. Multistage process contains the purpose of sequence (protein), its fragmentation, analysis and resulting sequence information. This information reveals similarities of homologous genes and its regulation and function of the gene, leads to a better understanding of disease states related to gene variation [14].

Microarray Analysis

Human genome contains approximately 30,000 genes [15]. Each of our cells has some combination of these genes active at any given instant and others inactive. Computation in the microarray data is great challenge because of large dimensionality and small sample size. Multivariate is unsupervised Clustering, Principle component analysis, Classification (statistical learning, discriminant analysis, supervised clustering). According to Jafari considerable and valuable effort has been done to contribute adapt FS, since microarray claims to be infancy [15]. Univariate features ranking techniques has been developed such as parametric and non-parametric (model free). Parametric method assumes given distribution from which samples have been generated. Two samples t-test and ANOVA are mostly used in microarray analysis even though usage not advisable [16]. ANOVA is for measuring the statistical significance of set of independent variables. ANOVA produces the p-value for the features set. ANOVA procedure recommended only for balanced data. Other types of parametric techniques such as regression modelling, Gamma distribution model. Since uncertainty is high in parametric techniques, the model free (non-parametric) techniques proposed. Metrics are from statistical categories(BSS/WSS) [17]. Using random permutation reference distribution of statistics were estimated in model free techniques. Multivariate regressions are Correlation features selection (CFS), minimum redundancy maximum relevance(MRMR). Proposed the use of methods under ROC curve or optimization of LASSO model. ROC gives interesting evaluation measure. Three broad problems in microarray analysis: a) class discovery (unsupervised classification), b) class comparison (differential gene expression), c) class prediction (supervised classification).

Genotype analysis

In the genome wide association study (GWAS) a large number of data have been generated for SNP analysis, its range from 100 to 1000 SNP. These SNP analysis is import to look the relation between phenotypic with genotypic data to relate the different disease condition. Different approaches were used based on data mining and genetic algorithm [18]. A weighted decision tree, a correlation-based heuristic are used for selecting significant genes. The goal of feature selection for SNPs can be achieved with supervised and unsupervised methods such as clustering, neighborhood analysis, applying classification algorithm and eliminating the lowest weight features can pruned DNA gene expression data sets by eliminating insignificant features [19]. The significant gene/SNP set in cross-validation accuracy was increased by 10% over the baseline measurements and the specificity increased by 3.2% over baseline measurements. Block free approach for tagging SNPs, the selection of tagging SNPs can be partitioned into the three following steps:

a. Determining neighborhoods of linkage disequilibrium: Find out which sets of SNPs can be meaningfully used to infer each other.

b. Tagging quality assessment: Define a quality measure that describes how well a set of tagging SNPs captures the variance observed.

c. Optimization: Minimize the number of tagging SNPs. The disadvantage of block free approach is not always straightforward definition of blocks and no consensus on how blocks must be formed. It is based only on the local correlations. To avoid computational complexity, did not look for subsets of SNPs but discard redundant markers using FS technique. It can give better performance on
large data set using exhaustive search to short chromosomal regions but this does not guarantee optimal solutions. In the genotyping the huge data generated and related between the SNP and LD (Linkage disequilibrium) was used by the block based approach [20].

Mass Spectroscopy Methodology

Mass Spectroscopy analysis is for protein-based biomarker profiling and disease diagnosis. Two different types of mass spectroscopy methodology used for analysis. The common method of sorting ions is the Time-Of-Flight (TOF) analyzer. In TOF analyzer ions are collected to an ion trap, and then accelerated with one push into an empty chamber with an electrical field in it. An instrument MALDI-TOF (Matrix-Assisted Laser Desorption and Ionization Time-Of-Flight) low resolution can contain up to 15,500 data points in spectrum and number of points can even grows for higher resolution instruments. MALDI-TOF is the most popular techniques presently employed for detecting quantitative or qualitative changes of proteins [21]. Mass spectrometry measures two properties of ion mixtures in the gas phase under a vacuum environment: the mass/charge ratio (m/z) of ionized proteins in the mixture and the number of ions present at different m/z values. Thus the mass spectrometry for a sample is a function of the molecules and used to test for presence or absence of one or more. The general pipeline is show in Figure 1, which includes three steps.

![Figure 1. Pipeline of pattern analysis of MS data](image-url)

Firstly, the MS data is pre-processed. Then, two kinds of dimension reduction methods are accepted. One is called feature transformation (FT). FT methods construct new features as functions that express relationships between the initial features. The other kind of methods is called feature selection (FS). The FS methods output a subset of the original input features without transforming them, such as t-test, sequential forward selection (SFS), boosting approaches, etc. The last step is classification, which gives the results of diagnosis, such as SVM, KNN, decision tree, etc.

As Somorjai et al. explained the data analysis steps is constrained by both high dimension input spaces and their inherent sparseness [20]. Several studies employ the simplest approach of considering every measured value as predictive features, so applying FS technique over 15000 variables up to 10000 variables [22].

Ensemble feature selection

An ensemble system is composed of a set of multiple classifiers and performs classification be selecting from the predictions made by each of the classifiers. Ensemble FS derived from decision tree and used to assess relevance of each features. Since wide research has shown that ensemble systems are often more accurate than any of the individual classifiers of the system alone and it is only natural that ensemble systems and feature selection would be combined at some point. Composed of set of multiple classifiers and performs classification be selecting from predictions made by each of the classifiers. Frequently a single FS technique is not optimal and redundant subset of feature data [23]. Therefore, Ensemble FS have been incorporated to improve the methods strength and methods stability [24]. Additional computational resources are required to use ensemble FS and if additional resources are affordable, ensemble FS offer framework to deal with small sample.

Conclusion and Future perspective

In this review we assess feature selection techniques in bioinformatics applications. Table1 shows software’s packages, their main reference and website shown. These software packages are free for academic use. We found issues and problems of small sample size and large dimensionality in data mining. Feature Selection techniques designed to deal with these problems. Productive effort has been performed in the proposal of univariate filter FS techniques. Future research is the development of ensemble Feature Selection approaches to enhance the robustness of selected feature subset and literature mining. Interesting opportunities towards genotype analysis is needed.

References

[34] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten (2009); The WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue 1.

[35] Kohavi et al. (1996), Data Mining with MLC++. A broad view with a large comparison of many algorithms in MLC++ on the large UC Irvine datasets.Received the IEEE Tools with Artificial Intelligence Best Paper Award, 1996.

<table>
<thead>
<tr>
<th>Software Names [References]</th>
<th>Mass Spectra analysis FS Software</th>
</tr>
</thead>
</table>

Microarray analysis FS Software

<table>
<thead>
<tr>
<th>Software Names [References]</th>
<th>Mass Spectra analysis FS Software</th>
</tr>
</thead>
</table>

General Purpose FS Software

<table>
<thead>
<tr>
<th>Software Names [References]</th>
<th>Mass Spectra analysis FS Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEKA[34]</td>
<td>http://www.cs.waikato.ac.nz/ml/weka/</td>
</tr>
</tbody>
</table>

Genomic Analysis

<table>
<thead>
<tr>
<th>Software Names [References]</th>
<th>Mass Spectra analysis FS Software</th>
</tr>
</thead>
</table>