

IE-352 Section 3, CRN: 48706/7/8 Section 4, CRN: 58626/7/8 Second Semester 1438-39 H (Spring-2018) – 4(4,1,2) "MANUFACTURING PROCESSES – 2"

Sunday, March 11, 2018 (23/06/1439H)	
Drilling Exercise + ANSWERS	
Name:	Student Number:
AHMED M. EL-SHERBEENY, PHD	4

Material-Removal Rate and Torque in Drilling.

A hole is being drilled in a block of magnesium alloy with a 10 - mm drill bit at a feed of 0.2 mm/rev and with the spindle running at N = 800 rpm. Calculate the following:

- a) material-removal rate
- b) power dissipated
- c) torque on the drill

Given:

- Workpiece material: magnesium alloy
- Process: drilling
- $D = 10 \, mm$
- $f = 0.2 \, mm/rev$
- N = 800 rev/min

Solution:

a) material-removal rate, $MRR = \left[\frac{(\pi)(D^2)}{4}\right](f)(N)$

$$MRR = \left[\frac{(\pi)(10 \ mm)^2}{4}\right] \left(0.2 \ \frac{mm}{rev}\right) \left(800 \ \frac{rev}{min}\right)$$
$$= 12566.37 \frac{mm^3}{min} * \left(\frac{1 \ min}{60 \ s}\right) = 209.44 \ mm^3/s$$
$$\blacktriangleright MRR = 209 \ mm^3/s$$

b) power dissipated, Power

remember,
$$u_t = \frac{Power}{MRR}$$

 u_t can be obtained from specific power table in ch.21, for different workpiece materials

 \Rightarrow for magnesium alloys, we can use an average value of 0.5 $W \cdot s/mm^3$

$$\Rightarrow Power = u_t \cdot MRR = \left(0.5 \ \frac{W \cdot s}{mm^3}\right) \cdot (209.44 \ mm^3/s) = 104.72 \ W$$

Power = 105 *W*

c) torque on the drill, *Torque*

Power = *Torque* $\cdot \omega$

$$\Rightarrow Torque = \frac{Power}{\omega} = \frac{104.72 W}{2\pi N} = \frac{104.72 N \cdot m/s}{(2\pi)(800) rad/min} * \frac{60 s}{min} = 1.25 N \cdot m$$

• Another solution (also good way to check your answer):

$$Torque = F_c \cdot \frac{D}{2}$$

$$F_c = \frac{Power}{V} = \frac{104.72 W}{\pi DN} = \frac{104.72 N \cdot m/s}{\pi (10 mm)(800 rev/min)} * \frac{60 s}{min} * \frac{1000 mm}{1 m}$$

$$= 250 N$$

$$\Rightarrow Torque = F_c \cdot \frac{D}{2} = (250 N) \cdot \left(\frac{10 mm}{2} * \frac{1 m}{1000 mm}\right) = 1.25 N \cdot m$$

• $Torque = 1.25 N \cdot m$

Note, compare the surface speed (V) with the feed rate (or linear speed, v)

Approximate Range of Energy Requirements in Cutting Operations at the Drive Motor of the Machine Tool (for Dull Tools, Multiply by 1.25)	
	Specific energy
Material	$W \cdot s/mm^3$
Aluminum alloys	0.4–1
Cast irons	1.1-5.4
Copper alloys	1.4-3.2
High-temperature alloys	3.2-8
Magnesium alloys	0.3–0.6
Nickel alloys	4.8-6.7
Refractory alloys	3–9
Stainless steels	2-5
Steels	2–9
Titanium alloys	2-5

in this problem:

جـــامــعــة الملك سعود King Saud University

$$V = \pi DN = (2\pi \, rad/rev) \left(\frac{10}{2} \, mm\right) (800 \, rev/min)$$

= 25,132.74 mm/min = 25.1 m/min

v = fN = (0.2 mm/rev)(800 rev/min) = 160 mm/min

i.e. V is much larger than v (157 times larger). Can you explain this?