IE-352

Section 3, CRN: 48706/7/8
Section 4, CRN: 58626/7/8
Second Semester 1438-39 H (Spring-2018) - 4(4,1,2)
"MANUFACTURING PROCESSES - 2"
Sunday, March 11, 2018 (23/06/1439H)
Drilling Exercise + ANSWERS

Name:	Student Number:

AHMED M. EL-SHERBEENY, PHD 4

Material-Removal Rate and Torque in Drilling.

A hole is being drilled in a block of magnesium alloy with a $10-\mathrm{mm}$ drill bit at a feed of $0.2 \mathrm{~mm} / \mathrm{rev}$ and with the spindle running at $N=800 \mathrm{rpm}$. Calculate the following:
a) material-removal rate
b) power dissipated
c) torque on the drill

Given:

- Workpiece material: magnesium alloy
- Process: drilling
- $D=10 \mathrm{~mm}$
- $f=0.2 \mathrm{~mm} / \mathrm{rev}$
- $N=800 \mathrm{rev} / \mathrm{min}$

Solution:

a) material-removal rate, $M R R=\left[\frac{(\pi)\left(D^{2}\right)}{4}\right](f)(N)$

$$
\begin{array}{r}
M R R=\left[\frac{(\pi)(10 \mathrm{~mm})^{2}}{4}\right]\left(0.2 \frac{\mathrm{~mm}}{\mathrm{rev}}\right)\left(800 \frac{\mathrm{rev}}{\mathrm{~min}}\right) \\
\quad=12566.37 \frac{\mathrm{~mm}^{3}}{\min } *\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=209.44 \mathrm{~mm}^{3} / \mathrm{s}
\end{array}
$$

$$
\rightarrow \quad M R R=209 \mathrm{~mm}^{3} / \mathrm{s}
$$

b) power dissipated, Power
remember, $u_{t}=\frac{\text { Power }}{M R R}$
u_{t} can be obtained from specific power table in ch.21, for different workpiece materials
\Rightarrow for magnesium alloys, we can use an average value of $0.5 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{mm}^{3}$

Approximate Range of Energy Requirements in Cutting
Operations at the Drive Motor of the Machine Tool
(for Dull Tools, Multiply by 1.25)

Approximate Range of Energy Requirements in Cutting
Operations at the Drive Motor of the Machine Tool (for Dull Tools, Multiply by I.25)

Specific energy

Material	$\mathrm{W} \cdot \mathrm{s} / \mathrm{mm}^{3}$
Aluminum alloys	$0.4-1$
Cast irons	$1.1-5.4$
Copper alloys	$1.4-3.2$
High-temperature alloys	$3.2-8$
Magnesium alloys	$0.3-0.6$
Nickel alloys	$4.8-6.7$
Refractory alloys	$3-9$
Stainless steels	$2-5$
Steels	$2-9$
Titanium alloys	$2-5$

$$
\Rightarrow \text { Power }=u_{t} \cdot M R R=\left(0.5 \frac{\mathrm{~W} \cdot \mathrm{~s}}{\mathrm{~mm}^{3}}\right) \cdot\left(209.44 \mathrm{~mm}^{3} / \mathrm{s}\right)=104.72 \mathrm{~W}
$$

$$
\text { Power }=105 W
$$

c) torque on the drill, Torque

$$
\begin{aligned}
& \text { Power }=\text { Torque } \cdot \omega \\
& \begin{aligned}
\Rightarrow \text { Torque } & =\frac{\text { Power }}{\omega}=\frac{104.72 \mathrm{~W}}{2 \pi \mathrm{~N}}=\frac{104.72 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}}{(2 \pi)(800) \mathrm{rad} / \mathrm{min}} * \frac{60 \mathrm{~s}}{\mathrm{~min}} \\
& =1.25 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
\end{aligned}
$$

- Another solution (also good way to check your answer):

Torque $=F_{c} \cdot \frac{D}{2}$
$F_{c}=\frac{\text { Power }}{V}=\frac{104.72 \mathrm{~W}}{\pi D N}=\frac{104.72 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}}{\pi(10 \mathrm{~mm})(800 \mathrm{rev} / \mathrm{min})} * \frac{60 \mathrm{~s}}{\min } * \frac{1000 \mathrm{~mm}}{1 \mathrm{~m}}$
$=$
$=250 \mathrm{~N}$
\Rightarrow Torque $=F_{c} \cdot \frac{D}{2}=(250 \mathrm{~N}) \cdot\left(\frac{10 \mathrm{~mm}}{2} * \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}\right)=1.25 \mathrm{~N} \cdot \mathrm{~m}$

$$
\text { Torque }=1.25 \mathrm{~N} \cdot \mathrm{~m}
$$

Note, compare the surface speed (V) with the feed rate (or linear speed, v)
in this problem:

$$
\begin{aligned}
& \begin{aligned}
V=\pi D N= & (2 \pi \mathrm{rad} / \mathrm{rev})\left(\frac{10}{2} \mathrm{~mm}\right)(800 \mathrm{rev} / \mathrm{min}) \\
& =25,132.74 \mathrm{~mm} / \mathrm{min}=25.1 \mathrm{~m} / \mathrm{min}
\end{aligned} \\
& v=f N=(0.2 \mathrm{~mm} / \mathrm{rev})(800 \mathrm{rev} / \mathrm{min})=160 \mathrm{~mm} / \mathrm{min}
\end{aligned}
$$

i.e. V is much larger than v (157 times larger). Can you explain this?

