Z - Transform

The z-transform is a very important tool in describing and analyzing digital systems.

It offers the techniques for digital filter design and frequency analysis of digital signals.

Definition of z-transform:

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Where z is a complex variable
For causal sequence, $\mathrm{x}(n)=0, n<0$:

$$
\begin{aligned}
X(z) & =Z(x(n))=\sum_{n=0}^{\infty} x(n) z^{-n} \\
& =x(0) z^{-0}+x(1) z^{-1}+x(2) z^{-2}+\ldots
\end{aligned}
$$

All the values of z that make the summation to exist form a region of convergence.

Example 1

Problem:
Given the sequence, $x(n)=u(n)$, find the z transform of $x(n)$.
Solution:

$$
X(z)=\sum_{n=0}^{\infty} u(n) z^{-n}=\sum_{n=0}^{\infty}\left(z^{-1}\right)^{n}=1+\left(z^{-1}\right)+\left(z^{-1}\right)^{2}+\ldots
$$

We know, $\quad 1+r+r^{2}+\ldots \stackrel{\prime}{=} \frac{1}{1-r}$ when $|r|<1$.
Therefore,

$$
X(z)=\frac{1}{1-z^{-1}}=\frac{1}{1-\frac{1}{z}}=\frac{z}{z-1}
$$

When, $\quad\left|z^{-1}\right|<1 \Rightarrow|z|>1$

Example 2

Problem:
Given the sequence, $x(n)=a^{n} u(n)$, find the z transform of $x(n)$.
Solution:

$$
X(z)=\sum_{n=0}^{\infty} a^{n} u(n) z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}=1+\left(a z^{-1}\right)+\left(a z^{-1}\right)^{2}+\ldots
$$

Therefore,

$$
\begin{aligned}
& X(z)=\frac{1}{1-a z^{-1}}= \frac{1}{1-\frac{a}{z}}=\frac{z}{z-a} \quad \begin{array}{c}
\text { Region of convergence } \\
\downarrow
\end{array} \\
& \text { When, }\left|a z^{-1}\right|<1 \Rightarrow|z|>a
\end{aligned}
$$

	Line No. $x(n), n \geq 0$		z-Transform $X(z)$	Convergence
	1	$x(n)$	$\sum_{n=0}^{\infty} x(n) z^{-n}$	
	2	$\delta(n)$	1	$\|z\|>0$
	3	$a u(n)$	$\frac{a z}{z-1}$	$\|z\|>1$
T- Tnansfonm	4	$n u(n)$	$\frac{z}{(z-1)^{2}}$	$\|z\|>1$
	5	$n^{2} u(n)$	$\frac{z(z+1)}{(z-1)^{3}}$	$\|z\|>1$
1able	6	$d^{n} u(n)$	$\frac{z}{z-a}$	$\|z\|>\|a\|$
	7	$e^{-n a} u(n)$	$\frac{z}{\left(z-e^{-a}\right)}$	$\|z\|>e^{-a}$
	8	$n a^{n} u(n)$	$\frac{a z}{(z-a)^{2}}$	$\|z\|>\|a\|$
	9	$\sin (a n) u(n)$	$\frac{z \sin (a)}{z^{2}-2 z \cos (a)+1}$	$\|z\|>1$
	10	$\cos (a n) u(n)$	$\frac{z[z-\cos (a)]}{z^{2}-2 z \cos (a)+1}$	$\|z\|>1$
	11	$d^{n} \sin (b n) u(n)$	$\frac{[a \sin (b)] z}{z^{2}-[2 a \cos (b)] z+a^{2}}$	$\|z\|>\|a\|$
	12	$d^{n} \cos (b n) u(n)$	$\frac{z[z-a \cos (b)]}{z^{2}-[2 a \cos (b)] z+a^{-2}}$	$\|z\|>\|a\|$
	13	$e^{-a n} \sin (b n) u(n)$	$\frac{\left[e^{-a} \sin (b)\right] z}{z^{2}-\left[2 e^{-a} \cos (b)\right] z+e^{-2 a}}$	$\|z\|>e^{-a}$
	14	$e^{-a n} \cos (b n) u(n)$	$\frac{z\left[z-e^{-a} \cos (b)\right]}{z^{2}-\left[2 e^{-a} \cos (b)\right] z+e^{-2 a}}$	$\|z\|>e^{-a}$

Example 3

Problem:
Find z -transform of the following sequences.
a. $x(n)=10 \sin (0.25 \pi n) u(n)$
b. $\quad x(n)=e^{-0.1 n} \cos (0.25 \pi n) u(n)$

Solution:
a. From line 9 of the Table:

$$
\begin{aligned}
X(z) & =10 Z(\sin (0.2 \pi n) u(n)) \\
& =\frac{10 \sin (0.25 \pi) z}{z^{2}-2 z \cos (0.25 \pi)+1}=\frac{7.07 z}{z^{2}-1.414 z+1} .
\end{aligned}
$$

b. From line 14 of the Table:

$$
\begin{aligned}
X(z) & =Z\left(e^{-0.1 n} \cos (0.25 \pi n) u(n)\right)=\frac{z\left(z-e^{-0.1} \cos (0.25 \pi)\right)}{z^{2}-2 e^{-0.1} \cos (0.25 \pi) z+e^{-0.2}} \\
& =\frac{z(z-0.6397)}{z^{2}-1.2794 z+0.8187} .
\end{aligned}
$$

Z- Transform Properties (1)

Linearity:

$$
Z\left(a x_{1}(n)+b x_{2}(n)\right)=a Z\left(x_{1}(n)\right)+b Z\left(x_{2}(n)\right)
$$

a and b are arbitrary constants.

Example 4

Problem:
Find z- transform of $x(n)=u(n)-(0.5)^{n} u(n)$.

Solution:

Therefore, we get $\quad X(z)=\frac{z}{z-1}-\frac{z}{z-0.5}$.

Z- Transform Properties (2)

Shift Theorem:

$$
Z(x(n-m))=z^{-m} X(z)
$$

Verification:

$$
\begin{aligned}
Z(x(n-m)) & =\sum_{n=0}^{\infty} x(n-m) z^{-n} \\
& =x(-m) z^{-0}+\ldots+x(-1) z^{-(m-1)}+x(0) z^{-m}+x(1) z^{-m-1}+\ldots
\end{aligned}
$$

Since $x(n)$ is assumed to be causal: $\quad x(-m)=x(-m+1)=\ldots=x(-1)=0$.

Then we achieve, $\quad Z(x(n-m))=x(0) z^{-m}+x(1) z^{-m-1}+x(2) z^{-m-2}+\ldots$.

$$
\square Z(x(n-m))=z^{-m}\left(x(0)+x(1) z^{-1}+x(2) z^{-2}+\ldots\right)=z^{-m} X(z) .
$$

Example 5

Problem:
Find z- transform of $\quad y(n)=(0.5)^{(n-5)} \cdot u(n-5)$,

$$
\text { where } u(n-5)=1 \text { for } n \geq 5 \text { and } u(n-5)=0 \text { for } n<5
$$

Solution:
Using shift theorem,

$$
Y(z)=Z\left[(0.5)^{n-5} u(n-5)\right]=z^{-5} Z\left[(0.5)^{n} u(n)\right] .
$$

Using z- transform table, line 6: $\quad Y(z)=z^{-5} \cdot \frac{z}{z-0.5}=\frac{z^{-4}}{z-0.5}$.

Z- Transform Properties (3)

Convolution

In time domain, $x(n)=x_{1}(n) * x_{2}(n)=\sum_{k=0}^{\infty} x_{1}(n-k) x_{2}(k)$,
In z- transform domain,

$$
X(z)=X_{1}(z) X_{2}(z)
$$

$$
X(z)=Z(x(n)), X_{1}(z)=Z\left(x_{1}(n)\right) \text {, and } X_{2}(z)=Z\left(x_{2}(n)\right) .
$$

Verification:

Using z- transform in Eq. (1)

$$
X(z)=\sum_{n=0}^{\infty} x(n) z^{-n}=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} x_{1}(n-k) x_{2}(k) z^{-n}
$$

$$
\square X(z)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} x_{2}(k) z^{-k} x_{1}(n-k) z^{-(n-k)} . \quad \square X(z)=\sum_{k=0}^{\infty} x_{2}(k) z^{-k} \sum_{n=0}^{\infty} x_{1}(n-k) z^{-(n-k)} .
$$

let $m=n-k: \leftrightarrows X(z)=\sum_{k=0}^{\infty} x_{2}(k) z^{-k} \sum_{m=0}^{\infty} x_{1}(m) z^{-m} \square \quad X(z)=X_{2}(z) X_{1}(z)=X_{1}(z) X_{2}(z)$.

Example 6

Problem: Given the sequences,

$$
\begin{array}{ll}
x_{1}(n)=3 \delta(n)+2 \delta(n-1) & \text { Find the z-transform of their } \\
x_{2}(n)=2 \delta(n)-\delta(n-1), & \text { convolution. }
\end{array}
$$

Solution:
Applying z-transform on the two sequences,

$$
\begin{aligned}
& X_{1}(z)=3+2 z^{-1} \\
& X_{2}(z)=2-z^{-1} .
\end{aligned} \quad \text { From the table, line } 2
$$

Therefore we get,

$$
\begin{aligned}
X(z) & =X_{1}(z) X_{2}(z)=\left(3+2 z^{-1}\right)\left(2-z^{-1}\right) \\
& =6+z^{-1}-2 z^{-2} .
\end{aligned}
$$

Inverse z- Transform: Examples

Find inverse z-transform of $\quad X(z)=2+\frac{4 z}{z-1}-\frac{z}{z-0.5}$

We get, $\quad x(n)=2 Z^{-1}(1)+4 Z^{-1}\left(\frac{z}{z-1}\right)-Z^{-1}\left(\frac{z}{z-0.5}\right)$

Example 7

Using table, $\quad x(n)=2 \delta(n)+4 u(n)-(0.5)^{n} u(n)$.

Find inverse z-transform of $\quad X(z)=\frac{5 z}{(z-1)^{2}}-\frac{2 z}{(z-0.5)^{2}} \quad$ Example 8
We get, $\quad x(n)=Z^{-1}\left(\frac{5 z}{(z-1)^{2}}\right)-Z^{-1}\left(\frac{2 z}{(z-0.5)^{2}}\right)=5 Z^{-1}\left(\frac{z}{(z-1)^{2}}\right)-\frac{2}{0.5} Z^{-1}\left(\frac{0.5 z}{(z-0.5)^{2}}\right)$

Using table, $\quad x(n)=5 n u(n)-4 n(0.5)^{n} u(n)$.

Inverse z- Transform: Examples

Find inverse z-transform of $\quad X(z)=\frac{10 z}{z^{2}-z+1}$
Since, $X(z)=\frac{10 z}{z^{2}-z+1}=\left(\frac{10}{\sin (a)}\right) \frac{\sin (a) z}{z^{2}-2 z \cos (a)+1}$,

Example 9

By coefficient matching, $\quad-2 \cos (a)=-1$
Hence, $\cos (a)=0.5$, and $a=60^{\circ}$

Therefore, $\quad x(n)=\frac{10}{\sin (a)} Z^{-1}\left(\frac{\sin (a) z}{z^{2}-2 z \cos (a)+1}\right)=\frac{10}{0.866} \sin \left(n \cdot 60^{\circ}\right)=11.547 \sin \left(n \cdot 60^{0}\right)$.
Find inverse z-transform of $\quad X(z)=\frac{z^{-4}}{z-1}+z^{-6}+\frac{z^{-3}}{z+0.5}$
Example 10

$$
\begin{gathered}
x(n)=Z^{-1}\left(z^{-5} \frac{z}{z-1}\right)+Z^{-1}\left(z^{-6} \cdot 1\right)+Z^{-1}\left(z^{-4} \frac{z}{z+0.5}\right) \\
x(n)=u(n-5)+\delta(n-6)+(-0.5)^{n-4} u(n-4) \\
\text { CEN352, Dr. Ghulam Muhammad } \\
\text { King Saud University }
\end{gathered}
$$

Inverse z-Transform: Using Partial Fraction

Problem:

$$
\text { Find inverse z-transform of } X(z)=\frac{1}{\left(1-z^{-1}\right)\left(1-0.5 z^{-1}\right)}
$$

Example 11
Solution:
First eliminate the negative power of z.

$$
X(z)=\frac{z^{2}}{z^{2}\left(1-z^{-1}\right)\left(1-0.5 z^{-1}\right)}=\frac{z^{2}}{(z-1)(z-0.5)}
$$

Dividing both sides by z: $\quad \frac{X(z)}{z}=\frac{z}{(z-1)(z-0.5)}=\frac{A}{(z-1)}+\frac{B}{(z-0.5)}$
Finding the $A=\left.(z-1) \frac{X(z)}{z}\right|_{z=1}=\left.\frac{z}{(z-0.5)}\right|_{z=1}=2$, constants:

$$
\left.B=\left.(z-0.5) \frac{X(z)}{z}\right|_{z=0.5}=\left.\frac{z}{(z-1)}\right|_{z=0.5}=-1\right] \quad X(z)=\frac{2 z}{(z-1)}+\frac{-z}{(z-0.5)}
$$

Therefore, inverse z-transform is: $\quad x(n)=2 u(n)-(0.5)^{n} u(n)$.

Inverse z-Transform: Using Partial Fraction

Problem:

$$
\text { Find } y(n) \text { if } Y(z)=\frac{z^{2}(z+1)}{(z-1)\left(z^{2}-z+0.5\right)}
$$

Example 12

Solution:
Dividing both sides by z: $\quad \frac{Y(z)}{z}=\frac{z(z+1)}{(z-1)\left(z^{2}-z+0.5\right)}$.

$$
\nabla \frac{Y(z)}{z}=\frac{B}{z-1}+\frac{A}{(z-0.5-j 0.5)}+\frac{A^{*}}{(z-0.5+j 0.5)}
$$

We first find B :

$$
B=\left.(z-1) \frac{Y(z)}{z}\right|_{z=1}=\left.\frac{z(z+1)}{\left(z^{2}-z+0.5\right)}\right|_{z=1}=\frac{1 \times(1+1)}{\left(1^{2}-1+0.5\right)}=4 .
$$

Next find A:

$$
A=\left.(z-0.5-j 0.5) \frac{Y(z)}{z}\right|_{z=0.5+j 0.5}=\left.\frac{z(z+1)}{(z-1)(z-0.5+j 0.5)}\right|_{z=0.5+j 0.5}
$$

Example 12 - contd.

$$
A=\frac{(0.5+j 0.5)(0.5+j 0.5+1)}{(0.5+j 0.5-1)(0.5+j 0.5-0.5+j 0.5)}=\frac{(0.5+j 0.5)(1.5+j 0.5)}{(-0.5+j 0.5) j} .
$$

Using polar form

$$
\begin{aligned}
A & =\frac{\left(0.707 \angle 45^{\circ}\right)\left(1.58114 \angle 18.43^{\circ}\right)}{\left(0.707 \angle 135^{\circ}\right)\left(1 \angle 90^{\circ}\right)}=1.58114 \angle-161.57^{\circ} \\
A^{*} & =\bar{A}=1.58114 \angle 161.57^{\circ} .
\end{aligned}
$$

$$
P=0.5+0.5 j=|P| \angle \theta=0.707 \angle 45^{\circ} \text { and } P^{*}=|P| \angle-\theta=0.707 \angle-45^{\circ} .
$$

Now we have: $\quad Y(z)=\frac{4 z}{z-1}+\frac{A z}{(z-P)}+\frac{A^{*} z}{\left(z-P^{*}\right)}$.
Therefore, the inverse z-transform is:

$$
\begin{aligned}
& y(n)=4 Z^{-1}\left(\frac{z}{z-1}\right)+Z^{-1}\left(\frac{A z}{(z-P)}+\frac{A^{*} z}{\left(z-P^{*}\right)}\right) \\
& y(n)=4 u(n)+2|A|(|P|)^{n} \cos (n \theta+\phi) u(n) \\
& \\
& =4 u(n)+3.1623(0.7071)^{n} \cos \left(45^{\circ} n-161.57^{\circ}\right) u(n) .
\end{aligned}
$$

Inverse z-Transform: Using Partial Fraction

Problem:

$$
\text { Find } x(n) \text { if } X(z)=\frac{z^{2}}{(z-1)(z-0.5)^{2}} \text {. }
$$

Example 13
Solution:
Dividing both sides by z:

$$
\frac{X(z)}{z}=\frac{z}{(z-1)(z-0.5)^{2}}=\frac{A}{z-1}+\frac{B}{z-0.5}+\frac{C}{(z-0.5)^{2}},
$$

where $A=\left.(z-1) \frac{X(z)}{z}\right|_{z=1}=\left.\frac{z}{(z-0.5)^{2}}\right|_{z=1}=4$.

$$
\begin{gathered}
\left|\frac{R_{m}}{(z-p)}+\frac{R_{m-1}}{(z-p)^{2}}+\cdots+\frac{R_{1}}{(z-p)^{m}} \quad R_{k}=\frac{1}{(k-1)!} \frac{d^{k-1}}{d z^{k-1}}\left((z-p)^{m} \frac{X(z)}{z}\right)\right|_{z=p} \\
B=R_{2}=\frac{1}{(2-1)!} \frac{d}{d z}\left\{(z-0.5)^{2} \frac{X(z)}{z}\right\}_{z=0.5} \longleftarrow \quad \mathrm{~m}=2, \mathrm{p}=0.5 \\
=\left.\frac{d}{d z}\left(\frac{z}{z-1}\right)\right|_{z=0.5}=\left.\frac{-1}{(z-1)^{2}}\right|_{z=0.5}=-4 \\
\substack{\text { CEN352, Dr. Ghulam Muhammad } \\
\text { King Saud University }}
\end{gathered}
$$

Example 13 - contd.

$$
\begin{aligned}
C=R_{1} & =\frac{1}{(1-1)!} \frac{d^{0}}{d z^{0}}\left\{(z-0.5)^{2} \frac{X(z)}{z}\right\}_{z=0.5} \\
& =\left.\frac{z}{z-1}\right|_{z=0.5}=-1 .
\end{aligned}
$$

Then $X(z)=\frac{4 z}{z-1}+\frac{-4 z}{z-0.5}+\frac{-1 z}{(z-0.5)^{2}}$.

From Table:

$$
Z^{-1}\left\{\frac{z}{z-1}\right\}=u(n)
$$

$$
\begin{aligned}
& Z^{-1}\left\{\frac{z}{z-0.5}\right\}=(0.5)^{n} u(n) \\
& Z^{-1}\left\{\frac{z}{(z-0.5)^{2}}\right\}=2 n(0.5)^{n} u(n)
\end{aligned}
$$

Finally we get,

$$
x(n)=4 u(n)-4(0.5)^{n} u(n)-2 n(0.5)^{n} u(n)
$$

Partial Function Expansion Using MATLAB

Problem:

$$
X(z)=\frac{1}{\left(1-z^{-1}\right)\left(1-0.5 z^{-1}\right)}
$$

Example 14

Solution:
The denominator polynomial can be found using MATLAB:

$$
\begin{aligned}
& >\operatorname{conv}\left(\left[\begin{array}{ll}
1 & -1
\end{array}\right],\left[\begin{array}{ll}
1 & -0.5
\end{array}\right]\right) \\
& D= \\
& 1.0000-1.5000 \\
& 0.5000
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& X(z)=\frac{1}{\left(1-z^{-1}\right)\left(1-0.5 z^{-1}\right)}=\frac{1}{1-1.5 z^{-1}+0.5^{-2}}=\frac{z^{2}}{z^{2}-1.5 z+0.5} \\
& \text { and } \frac{X(z)}{z}=\frac{z}{z^{2}-1.5 z+0.5} .
\end{aligned}
$$

$\gg[R, P, K]=\operatorname{residue}([10],[1-1.50 .5])$
$\begin{array}{crr}\mathbf{R}= & \mathbf{P}= & \mathbf{K}= \\ \mathbf{2} & \mathbf{1 . 0 0 0 0} & \text { II } \\ -1 & \mathbf{0 . 5 0 0 0} & \end{array}$

The solution is:

$$
X(z)=\frac{2 z}{z-1}-\frac{z}{z-0.5} .
$$

Partial Function Expansion Using MATLAB

Problem:

$$
Y(z)=\frac{z^{2}(z+1)}{(z-1)\left(z^{2}-z+0.5\right)}
$$

Example 15

Solution:

$\left.\begin{array}{l}>[\overline{\mathrm{R}}, \mathrm{P}, \mathrm{K}\end{array}\right]=\operatorname{residue}\left(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right],\left[\begin{array}{llll}1 & -2 & 1.5 & -0.5\end{array}\right]\right)$
4.0000
$-1.5000-0.5000 \mathrm{i}$
$-1.5000+0.5000 \mathrm{i}$
$\mathbf{P}=$
1.0000
$0.5000+0.5000 \mathrm{i}$
$0.5000-0.5000 \mathrm{i}$
$\mathbf{K}=$
$X(z)=\frac{B z}{z-p_{1}}+\frac{A z}{z-p}+\frac{A^{*} z}{z-p^{*}}$,

	$-1.5000-0.5000 \mathrm{i}$
	$-1.5000+0.5000 \mathrm{i}$
$\mathrm{P}=$	
	1.0000
	$0.5000+0.5000 \mathrm{i}$
	$0.5000-0.5000 \mathrm{i}$

II

Partial Function Expansion Using MATLAB

Problem:

$$
X(z)=\frac{z^{2}}{(z-1)(z-0.5)^{2}}
$$

Example 16

Solution:

$$
\begin{aligned}
& \gg D=\operatorname{conv}\left(\operatorname{conv}\left(\left[\begin{array}{ll}
1 & -1
\end{array}\right],\left[\begin{array}{ll}
1 & -0.5
\end{array}\right]\right),\left[\begin{array}{ll}
1 & -0.5
\end{array}\right]\right) \\
& D= \\
& 1.0000-2.0000 \\
& 1.2500-0.2500
\end{aligned}
$$

$$
X(z)=\frac{z^{2}}{(z-1)(z-0.5)^{2}}=\frac{z^{2}}{z^{3}-2 z^{2}+1.25 z-0.25} \quad \square \frac{X(z)}{z}=\frac{z}{z^{3}-2 z^{2}+1.25 z-0.25} .
$$

$$
\gg[\mathrm{R}, \mathrm{P}, \mathrm{~K}]=\operatorname{residue}\left(\left[\begin{array}{ll}
1 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & -2 & 1.25 & -0.25
\end{array}\right]\right)
$$

$$
\mathbf{R}=
$$

4.0000
-4.0000
-1.0000

$$
\mathbf{P}=
$$

1.0000
0.5000
0.5000
$\square X(z)=\frac{4 z}{z-1}-\frac{4 z}{z-0.5}-\frac{z}{(z-0.5)^{2}}$

Difference Equation Using Z-Transform

The procedure to solve difference equation using z-transform:

1. Apply z-transform to the difference equation.
2. Substitute the initial conditions.
3. Solve for the difference equation in z -transform domain.
4. Find the solution in time domain by applying the inverse z-transform.

Example 17

Problem:
Solve the difference equation when the initial condition is $y(-1)=1$.

$$
y(n)-0.5 y(n-1)=5(0.2)^{n} u(n)
$$

Solution:
Taking z-transform on both sides:

$$
Y(z)-0.5\left(y(-1)+z^{-1} Y(z)\right)=5 Z\left(0.2^{n} u(n)\right)
$$

Substituting the initial condition and z-transform on right hand side using Table:

$$
Y(z)-0.5\left(1+z^{-1} Y(z)\right)=5 z /(z-0.2)
$$

Arranging $\mathrm{Y}(\mathrm{z})$ on left hand side:

$$
\begin{array}{ll}
& Y(z)-0.5 z^{-1} Y(z)=0.5+5 z /(z-0.2) \\
\Rightarrow & Y(z)\left(1-0.5 z^{-1}\right)=(5.5 z-0.1) /(z-0.2) \\
\Rightarrow & Y(z)=\frac{(5.5 z-0.1)}{\left(1-0.5 z^{-1}\right)(z-0.2)}=\frac{z(5.5 z-0.1)}{(z-0.5)(z-0.2)}
\end{array}
$$

Example 17 - contd.

$$
\dagger \frac{Y(z)}{z}=\frac{5.5 z-0.1}{(z-0.5)(z-0.2)}=\frac{A}{z-0.5}+\frac{B}{z-0.2}
$$

Solving for A and B :

$$
\begin{aligned}
& A=\left.(z-0.5) \frac{Y(z)}{z}\right|_{z=0.5}=\left.\frac{5.5 z-0.1}{z-0.2}\right|_{z=0.5}=\frac{5.5 \times 0.5-0.1}{0.5-0.2}=8.8333, \\
& B=\left.(z-0.2) \frac{Y(z)}{z}\right|_{z=0.2}=\left.\frac{5.5 z-0.1}{z-0.5}\right|_{z=0.2}=\frac{5.5 \times 0.2-0.1}{0.2-0.5}=-3.3333 .
\end{aligned}
$$

Therefore, $\quad Y(z)=\frac{8.8333 z}{(z-0.5)}+\frac{-3.3333 z}{(z-0.2)}$
Taking inverse z-transform, we get the solution:

$$
y(n)=8.3333(0.5)^{n} u(n)-3.3333(0.2)^{n} u(n)
$$

Example 18

Problem:
A DSP system is described by the following differential equation with zero initial condition:

$$
y(n)+0.1 y(n-1)-0.2 y(n-2)=x(n)+x(n-1)
$$

a. Determine the impulse response $y(n)$ due to the impulse sequence $x(n)=\delta(n)$.
b. Determine system response $y(n)$ due to the unit step function excitation, where $u(n)=1$ for $n \geq 0$.

Solution:
Taking z-transform on both sides:
a.

$$
Y(z)+0.1 Y(z) z^{-1}-0.2 Y(z) z^{-2}=X(z)+X(z) z^{-1}
$$

Applying $X(z)=Z(\delta(n))=1$ on right side

$$
\begin{aligned}
& Y(z)\left(1+0.1 z^{-1}-0.2 z^{-2}\right)=1\left(1+z^{-1}\right) \\
\square & Y(z)=\frac{1+z^{-1}}{1+0.1 z^{-1}-0.2 z^{-2}}
\end{aligned}
$$

Example 18 - contd.

We multiply the numerator and denominator by z^{2}

$$
\begin{gathered}
Y(z)=\frac{z^{2}+z}{z^{2}+0.1 z-0.2}=\frac{z(z+1)}{(z-0.4)(z+0.5)} \\
\qquad \frac{Y(z)}{z}=\frac{z+1}{(z-0.4)(z+0.5)}=\frac{A}{z-0.4}+\frac{B}{z+0.5}
\end{gathered}
$$

Solving for A and B :

$$
\begin{aligned}
& A=\left.(z-0.4) \frac{Y(z)}{z}\right|_{z=0.4}=\left.\frac{z+1}{z+0.5}\right|_{z=0.4}=\frac{0.4+1}{0.4+0.5}=1.5556 \\
& B=\left.(z+0.5) \frac{Y(z)}{z}\right|_{z=-0.5}=\left.\frac{z+1}{z-0.4}\right|_{z=-0.5}=\frac{-0.5+1}{-0.5-0.4}=-0.5556 .
\end{aligned}
$$

$$
\text { Therefore, } \quad Y(z)=\frac{1.5556 z}{(z-0.4)}+\frac{-0.5556 z}{(z+0.5)}
$$

Hnece the impulse response:

$$
y(n)=1.5556(0.4)^{n} u(n)-0.5556(-0.5)^{n} u(n)
$$

Example 18 - contd.

b.

The input is step unit function: $\quad x(n)=u(n)$
Corresponding z-transform: $\quad X(z)=\frac{z}{z-1}$

$$
\begin{equation*}
Y(z)+0.1 Y(z) z^{-1}-0.2 Y(z) z^{-2}=X(z)+X(z) z^{-1} \tag{Slide24}
\end{equation*}
$$

$$
\begin{gathered}
Y(z)=\left(\frac{\mathrm{z}}{\mathrm{z}-1}\right)\left(\frac{1+z^{-1}}{1+0.1 \mathrm{z}^{-1}-0.2 z^{-2}}\right)=\frac{z^{2}(z+1)}{(z-1)(z-0.4)(z+0.5)} \\
Y(z)=\frac{2.2222 z}{z-1}+\frac{-1.0370 z}{z-0.4}+\frac{-0.1852 z}{z+0.5} \quad \begin{array}{l}
\text { Do the } \\
\text { middle } \\
\text { steps by } \\
\text { yourself! }
\end{array}
\end{gathered}
$$

$$
y(n)=2.2222 u(n)-1.0370(0.4)^{n} u(n)-0.1852(-0.5)^{n} u(n) .
$$

